Đại số lớp 6

ND

A= \(\dfrac{1}{5^2}\)+\(\dfrac{2}{5^3}\)+\(\dfrac{3}{5^4}\)+.....+\(\dfrac{n}{5^{n+1}}\)+......+\(\dfrac{11}{5^{12}}\) với n\(\in\)N.chứng minh A<\(\dfrac{1}{16}\)

NH
8 tháng 5 2017 lúc 20:05

Ta có :

\(A=\dfrac{1}{5^2}+\dfrac{2}{5^3}+\dfrac{3}{5^4}+.............+\dfrac{n}{5^{n+1}}+.....+\dfrac{11}{5^{12}}\)

\(\Rightarrow5A=\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{3^3}+........+\dfrac{n}{5^n}+..........+\dfrac{11}{5^{11}}\)

\(\Rightarrow5A-A=\left(\dfrac{1}{5}+\dfrac{2}{5^2}+\dfrac{3}{5^3}+.....+\dfrac{n}{5^n}+....+\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5^2}+\dfrac{2}{5^3}+.....+\dfrac{n}{5^{n+1}}+........+\dfrac{11}{5^{12}}\right)\)\(\Rightarrow4A=\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\)

\(\Rightarrow20A=1+\dfrac{1}{5}+.........+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\)

\(\Rightarrow20A-4A=\left(1+\dfrac{1}{5}+.......+\dfrac{1}{5^{10}}-\dfrac{11}{5^{11}}\right)-\left(\dfrac{1}{5}+\dfrac{1}{5^2}+........+\dfrac{1}{5^{11}}-\dfrac{11}{5^{12}}\right)\)\(\Rightarrow16A=1-\dfrac{12}{5^{11}}+\dfrac{11}{5^{12}}< 1\)

\(\Rightarrow A< \dfrac{1}{16}\rightarrowđpcm\)

Bình luận (0)

Các câu hỏi tương tự
MN
Xem chi tiết
KL
Xem chi tiết
HC
Xem chi tiết
TH
Xem chi tiết
WT
Xem chi tiết
KL
Xem chi tiết
TV
Xem chi tiết
DM
Xem chi tiết
KL
Xem chi tiết