Ôn tập toán 8

NH

a) Chứng minh rằng số n2 +2014 với n nguyên dương không là số chính phương.

b) Cho a, b là các số dương thỏa mãn a3 + b3 = a5 + b5.

Chứng minh rằng: a2 + b2 ≤ 1 + ab

                             Đi qua đi lại mấy anh giúp em

PL
27 tháng 7 2016 lúc 10:24

a) Nếu n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2 → k2 – n2 = 2014

→ (k – n)(k + n) = 2014 (*)

Vậy (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (*) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương 

b) Với 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

↔ (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

↔a3 + b3 ≤ a + b

↔ (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

↔ a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

↔ 2a3b3 ≤ ab5 + a5b

↔ ab(a4 – 2a2b2 + b4) ≥ 0

↔ ab(a2 - b2) ≥ 0 đúng ∀ a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

Bình luận (0)
IM
27 tháng 7 2016 lúc 10:32

a)Giả sử n2+2014 là số chính phương với n nguyên dương thì n2 + 2014 = k2

=> k2 – n2 = 2014

=> (k – n)(k + n) = 2014 (1)

Mà (k + n) – (k – n) = 2n là số chẵn nên k và n phải cùng chẵn hoặc cùng lẻ.

Mặt khác (k – n)(k + n) = 2014 là chẵn

Nên (k – n), (k + n) đều chia hết cho 2 hay (k – n)(k + n) chia hết cho 4

Mà 2014 không chia hết cho 4

Suy ra đẳng thức (1) không thể xảy ra.

Vậy không có số nguyên dương n nào để số n2 + 2014 là số chính phương 

b) Ta có : 2 số a, b dương:

Xét: a2 + b2 – ab ≤ 1

<=> (a + b)(a2 + b2 – ab) ≤ (a + b) (vì a + b > 0)

<=>a3 + b3 ≤ a + b

<=> (a3 + b3)(a3 + b3) ≤ (a + b)(a5 + b5) (vì a3 + b3 = a5 + b5)

<=> a6 + 2a3b3 + b6 ≤ a6 + ab5 + a5b + b6

<=> 2a3b3 ≤ ab5 + a5b

<=> ab(a4 – 2a2b2 + b4) ≥ 0

<=> ab(a2 - b2) ≥ 0 đúng với mọi a, b > 0 .

Vậy: a2 + b2 ≤ 1 + ab với a, b dương và a3 + b3 = a5 + b5

Bình luận (0)

Các câu hỏi tương tự
SL
Xem chi tiết
VT
Xem chi tiết
CL
Xem chi tiết
LT
Xem chi tiết
MJ
Xem chi tiết
DN
Xem chi tiết
TN
Xem chi tiết
NL
Xem chi tiết
PP
Xem chi tiết