Bài 2. Phương trình bậc hai một ẩn

H24

a) Bằng cách đưa về dạng phương trình tích, hãy giải các phương trình sau:

i) \(3{x^2} - 12x = 0\)

ii) \({x^2} - 16 = 0\)

b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phép biến đổi nào?

H24
25 tháng 10 2024 lúc 23:50

a) i) \(3{x^2} - 12x = 0\)

\(3x\left( {x - 4} \right) = 0\)

\(3x = 0\) hoặc \(x - 4 = 0\)

\(x = 0\) hoặc \(x = 4\)

Vậy phương trình có hai nghiệm là \( x = 0\) và \( x = 4\).

ii) \({x^2} - 16 = 0\)

\(\left( {x - 4} \right)\left( {x + 4} \right) = 0\)

\(x - 4 = 0\) hoặc \(x + 4 = 0\)

\(x = 4\) hoặc \(x = -4\)

Vậy phương trình có hai nghiệm là \(x = 4\) và \(x = -4\).

b) Để đưa các phương trình bậc hai dạng đặc biệt trên về phương trình tích ta đã dùng phương pháp đặt nhân tử chung và hằng đẳng thức.

Bình luận (0)