\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
=\(\left(\dfrac{9}{25}-36\right):4\)
= -35,64:4=-8,91
\(\left(\dfrac{9}{25}-2.18\right):\left(3\dfrac{4}{5}+0,2\right)\)
=\(\left(\dfrac{9}{25}-36\right):4\)
= -35,64:4=-8,91
Tìm x ∈ Z, biết:
a, \(\dfrac{3}{2}\). 4x + \(\dfrac{5}{3}\). 4x+2 = \(\dfrac{3}{2}\). 48 + \(\dfrac{5}{3}\). 410
b, (1/3 + 1/6) . 2x + 2x+1 = 212 + 210
c, (1/2 - 1/3 ) . 6x + 6x+2 = 615 + 618
d, \(\dfrac{5}{3}\). 8x+2 - \(\dfrac{3}{5}\) . 8x = \(\dfrac{5}{3}\). 811 - \(\dfrac{3}{5}\). 89
1)Tìm x, biết :
\(4.\left[3x-1\right]+\left[x\right]-2.\left[x-5\right]+7.\left[x-3\right]=12\)
\(\left[2\dfrac{1}{5}-x\right]+\left[x-\dfrac{1}{5}\right]+8\dfrac{1}{5}=1,2\)
\(3.\left[x+4\right]-\left[2.x+1\right]-5.\left[x-3\right]+\left[x-9\right]=5\)
\(2\left[x+3\dfrac{1}{2}\right]+\left[x\right]-3\dfrac{1}{2}=\left[2\dfrac{1}{5}-x\right]\)
bài 1 tìm x thuộc Q biết
a. |x|=\(^1_53\) và x<0
b.|x|=-2,1
c.|x-3,5|=5
d. |x+\(\dfrac{3}{4}\)|-\(\dfrac{1}{2}\)=0
e. |x-\(\dfrac{2}{5}\)|+\(\dfrac{1}{2}\)=\(\dfrac{3}{4}\)
f. \(\dfrac{5}{6}\)-|2-x|=\(\dfrac{1}{3}\)
g. (2x-5)^2=9
h. \(\sqrt{3-7x}\)=\(\dfrac{1}{4}\)
i. (\(\dfrac{2}{3}\))^x=\(\dfrac{8}{27}\)
k. (x+\(\dfrac{1}{2}\))^2=\(\dfrac{1}{9}\)
l. \(\dfrac{\left(-3^x\right)}{81}\)=-27
m.\(\left(x-2\right)\)^2x+3=(x-2)^2x+1(x thuộc N)
Cho : P= \(\dfrac{7!.3!}{10!}.\left(\dfrac{8!}{3!.5!}-\dfrac{9!}{2!.5!}\right)+10\) .Tính phần nguyên của P
\(\dfrac{1}{2}\)-\(\dfrac{3}{4}\).\(\left(\dfrac{-6}{5}\right)\)
\(\dfrac{\dfrac{1^0}{9}.3^2.9^3}{729}\)
Tính và tìm x:
a) \(\dfrac{-1}{4}\).13\(\dfrac{9}{11}\) - 0,25 . 6\(\dfrac{2}{11}\)
b) \(\dfrac{31}{9}\). /x/ - \(\dfrac{5}{2}\) = \(\dfrac{8}{3}\)
a, \(\dfrac{\left(-3\right)^x}{81}=-27\)
b, \(2^{x-1}=16\)
c, \(\left(x-1\right)^2=25\)
d, \(0,2-\left|4,2-2x\right|=0\)
e, \(1\dfrac{2}{3}:\dfrac{x}{4}=6:0,3\)
Câu 1:Thực hiện phép tính(tính một cách hợp lí nếu có thể):
a)\(\dfrac{1}{2}-\dfrac{-3}{6}=+\dfrac{5}{3}-\dfrac{9}{12}\)
b)\(\begin{matrix}&\left(\dfrac{-2}{3}\right)\end{matrix}.\dfrac{3}{11}+\left(\dfrac{-16}{9}\right):\dfrac{11}{3}\)
c)\(\begin{matrix}&\left(\dfrac{2}{3}\right)^0\end{matrix}-\sqrt{9+}\left(-\dfrac{^{ }1}{2}\right)^2\)
\(\left(\dfrac{1}{3}\right)^{50}.\left(-9\right)^{25}-\dfrac{2}{3}:4\)
Thành thật cám ơn cá bạn!❤