Phép nhân và phép chia các đa thức

TN

88. Rút gọn biểu thức:

\(A=\dfrac{a^3+b^3+c^3-3abc}{a^2+b^2+c^2-ab-bc-ca}\)

LF
21 tháng 6 2017 lúc 20:53

Tử \(a^3+b^3+c^3-3abc\)

\(=(a^3+b^3)+c^3-3abc\)

\(=(a+b)^3-3ab(a+b)+c^3-3abc\)

\(=(a+b+c)[(a+b)^2-(a+b)c+c^2]-3ab(a+b+c)\)

\(=(a+b+c)(a^2+2ab+b^2-ac-bc+c^2-3ab)\)

\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)\)

Khi đó \(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ca\right)}{a^2+b^2+c^2-ab-bc-ca}=a+b+c\)

Bình luận (0)
TN
21 tháng 6 2017 lúc 20:54

Ta có :

\(a^3+b^3+c^3-3abc\)

\(=\left(a+b\right)^3+c^3-3abc-3a^2b-3ab^2\)

\(=\left(a+b+c\right)\left[\left(a+b\right)^2-\left(a+b\right)c+c^2\right]-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+2ab+b^2-ac-bc+c^2\right)-3ab\left(a+b+c\right)\)\(=\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)\) Thay vào biểu thức ta được:

\(A=\dfrac{\left(a+b+c\right)\left(a^2+b^2+c^2-ab-bc-ac\right)}{a^2+b^2+c^2-ab-bc-ac}=a+b+c\)

Bình luận (2)

Các câu hỏi tương tự
NT
Xem chi tiết
NT
Xem chi tiết
NY
Xem chi tiết
KH
Xem chi tiết
TG
Xem chi tiết
NA
Xem chi tiết
HT
Xem chi tiết
VP
Xem chi tiết
TG
Xem chi tiết