Ôn tập toán 6

LD

8 Tìm​ x,y biết:

a) 2\(\left|2x-3\right|\)=\(\dfrac{1}{2}\) b)7,5-3\(\left|5-2x\right|\)=-4,5 c)\(\left|3x-4\right|\)+\(\left|3y+5\right|\)=0

DH
25 tháng 6 2017 lúc 15:48

a, \(2\left|2x-3\right|=\dfrac{1}{2}\)

\(\Rightarrow\left|2x-3\right|=\dfrac{1}{4}\)

\(\Rightarrow\left\{{}\begin{matrix}2x-3=\dfrac{1}{4}\\2x-3=-\dfrac{1}{4}\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{13}{8}\\x=\dfrac{11}{8}\end{matrix}\right.\)

b, \(7,5-3\left|5-2x\right|=-4,5\)

\(\Rightarrow3\left|5-2x\right|=12\)

\(\Rightarrow\left|5-2x\right|=4\)

\(\Rightarrow\left\{{}\begin{matrix}5-2x=4\\5-2x=-4\end{matrix}\right.\) \(\Rightarrow\left\{{}\begin{matrix}x=\dfrac{1}{2}\\x=\dfrac{9}{2}\end{matrix}\right.\)

c, \(\left|3x-4\right|+\left|3y+5\right|=0\)

Với mọi giá trị của \(x;y\in R\) ta có:

\(\left|3x-4\right|\ge0;\left|3y+5\right|\ge0\)

\(\Rightarrow\left|3x-4\right|+\left|3y+5\right|\ge0\) với mọi giá trị của \(x;y\in R\).

Để \(\left|3x-4\right|+\left|3y+5\right|=0\) thì

\(\left\{{}\begin{matrix}\left|3x-4\right|=0\\\left|3y+5\right|=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}3x-4=0\\3y+5=0\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}3x=4\\3y=-5\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x=\dfrac{4}{3}\\y=-\dfrac{5}{3}\end{matrix}\right.\)

Vậy.............

Chúc bạn học tốt!!!

Bình luận (2)

Các câu hỏi tương tự
LA
Xem chi tiết
SA
Xem chi tiết
TL
Xem chi tiết
WT
Xem chi tiết
KK
Xem chi tiết
H24
Xem chi tiết
DA
Xem chi tiết
NT
Xem chi tiết
PM
Xem chi tiết