Chương 1: HÀM SỐ LƯỢNG GIÁC. PHƯƠNG TRÌNH LƯỢNG GIÁC

LH

3.3 .giải phương trình

d) sin 8x - cos 6x = \(\sqrt{3}\)(sin 6x + cos 8x)

3.4 .giải pt

a) 2sin(\(x+\dfrac{\pi}{4}\)) + 4 sin (\(x-\dfrac{\pi}{4}\)) = \(\dfrac{3\sqrt{5}}{2}\)

b)3 sin (x-\(\dfrac{\pi}{3}\)) + 4 sin (x +\(\dfrac{\pi}{6}\)) + 5 sin(5x +\(\dfrac{\pi}{6}\)) = 0

3.9 a) 8sin x =\(\dfrac{\sqrt{3}}{cosx}+\dfrac{1}{sinx}\)

b)\(2\sqrt{sinx}=\dfrac{\sqrt{3}tanx}{2\sqrt{sinx}-1}-1\)

mọi người ơi giúp mình với mình sắp phải kiểm tra rồi

LD
27 tháng 9 2018 lúc 11:18

3.3 d)

\(\sin8x-\cos6x=\sqrt{3}\left(\sin6x+\cos8x\right)\\ \Leftrightarrow\sin8x-\sqrt{3}\cos8x=\sqrt{3}\sin6x+\cos6x\\ \Leftrightarrow\sin\left(8x-\dfrac{\pi}{3}\right)=\sin\left(6x+\dfrac{\pi}{6}\right)\\ \Leftrightarrow\left[{}\begin{matrix}8x-\dfrac{\pi}{3}=6x+\dfrac{\pi}{6}+k2\pi\\8x-\dfrac{\pi}{3}=\pi-\left(6x+\dfrac{\pi}{6}\right)+k2\pi\end{matrix}\right.\\ \Leftrightarrow\left[{}\begin{matrix}x=\dfrac{\pi}{4}+k\pi\\x=\dfrac{\pi}{12}+k\dfrac{\pi}{7}\end{matrix}\right.\)

Bình luận (2)
LD
27 tháng 9 2018 lúc 11:35

3.4 a)

\(2sin\left(x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(\dfrac{\pi}{2}-x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(-x+\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \Leftrightarrow2cos\left(x-\dfrac{\pi}{4}\right)+4sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3\sqrt{2}}{5}\\ \)

Chia hai vế cho \(\sqrt{2^2+4^2}=2\sqrt{5}\)

Ta được:

\(\dfrac{1}{\sqrt{5}}cos\left(x-\dfrac{\pi}{4}\right)+\dfrac{2}{\sqrt{5}}sin\left(x-\dfrac{\pi}{4}\right)=\dfrac{3}{4}\\ \)

Gọi \(\alpha\) là góc có \(cos\alpha=\dfrac{1}{\sqrt{5}}\)\(sin\alpha=\dfrac{2}{\sqrt{5}}\)

Phương trình tương đương:

\(cos\left(x-\dfrac{\pi}{4}-\alpha\right)=\dfrac{3}{4}\\ \Leftrightarrow x=\pm arscos\left(\dfrac{3}{4}\right)+\dfrac{\pi}{4}+\alpha+k2\pi\)

Bình luận (0)

Các câu hỏi tương tự
NH
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
DN
Xem chi tiết
TY
Xem chi tiết
LC
Xem chi tiết
MK
Xem chi tiết
H24
Xem chi tiết
DN
Xem chi tiết