|x(x-4)|=x
\(\Rightarrow x\left(x-4\right)=\pm x\)
Nếu \(x\left(x-4\right)=x\)
\(\Rightarrow x^2-4x=x\)
\(\Rightarrow x^2-5x=0\)
\(\Rightarrow x\left(x-5\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=5\\x=0\end{array}\right.\)
Nếu \(x\left(x-4\right)=-x\)
\(\Rightarrow x^2-4x=-x\)
\(\Rightarrow x^2-3x=0\)
\(\Rightarrow x\left(x-3\right)=0\)
\(\Rightarrow\left[\begin{array}{nghiempt}x=0\\x=3\end{array}\right.\)
Vậy x=0 hoặc x=3 hoặc x=5
\(\left|x\left(x-4\right)\right|=x\)
\(\Rightarrow x\left(x-4\right)=x\) hoặc \(x\left(x-4\right)=-x\)
+) \(x\left(x-4\right)=x\Rightarrow x-4=1\Rightarrow x=5\)
+) \(x\left(x-4\right)=-x\Rightarrow x-4=-1\Rightarrow x=3\)
Vậy \(x=5\) hoặc \(x=3\)
\(\left|x\left(x-4\right)\right|=x\)
\(x\left(x-4\right)=\pm x\)
\(\begin{cases}x\left(x-4\right)=x\\x\left(x-4\right)=-x\end{cases}\)
\(\begin{cases}x-4=1\\x-4=-1\end{cases}\)
\(\begin{cases}x=1+4\\x=-1+4\end{cases}\)
\(\begin{cases}x=5\\x=3\end{cases}\)