Ôn tập toán 6

CT

\(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\)

MV
9 tháng 5 2017 lúc 20:16

C1:

Gọi \(S=2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\)

\(S=2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\\ 2S=4034+2017+\dfrac{2017}{2^2}+...+\dfrac{2017}{2^{2016}}\\ 2S-S=\left(4034+2017+\dfrac{2017}{2^2}+...+\dfrac{2017}{2^{2016}}\right)-\left(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\right)\\ S=4034-\dfrac{2017}{2^{2017}}\)

(Khuyên dùng)

Bình luận (0)
MV
9 tháng 5 2017 lúc 20:16

C2:

\(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\\ =2017\cdot\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\right)\)

Gọi \(S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\)

\(S=1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\\ 2S=2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\\ 2S-S=\left(2+1+\dfrac{1}{2}+\dfrac{1}{2^2}+...+\dfrac{1}{2^{2016}}\right)-\left(1+\dfrac{1}{2}+\dfrac{1}{2^2}+\dfrac{1}{2^3}+...+\dfrac{1}{2^{2017}}\right)\\ S=2-\dfrac{1}{2^{2017}}\)

\(2017+\dfrac{2017}{2}+\dfrac{2017}{2^2}+\dfrac{2017}{2^3}+...+\dfrac{2017}{2^{2017}}\\ =2017\cdot S\\ =2017\cdot\left(2-\dfrac{1}{2^{2017}}\right)\\ =4034-\dfrac{2017}{2^{2017}}\)
Bình luận (0)

Các câu hỏi tương tự
KL
Xem chi tiết
PA
Xem chi tiết
CT
Xem chi tiết
NM
Xem chi tiết
NL
Xem chi tiết
NA
Xem chi tiết
NC
Xem chi tiết
KL
Xem chi tiết
KL
Xem chi tiết