a)
\(\Rightarrow3^{-2}.\left(3^3\right)^n=3^n\)
\(\Rightarrow3^{-2}.3^{3n}=3^n\)
\(\Rightarrow3^{3n-2}=3^n\)
\(\Rightarrow3n-2=n\)
\(\Rightarrow n=1\)
b)
\(\Rightarrow3^{4+n-2}=3^7\)
\(\Rightarrow x^{n+2}=3^7\)
\(\Rightarrow n+2=7\)
\(\Rightarrow n=5\)
c)
\(\Rightarrow2^n\left(\frac{1}{2}+4\right)=9.2^5\)
\(\Rightarrow2^n.4,5=9.2^5\)
\(\Rightarrow2^n=2.2^5\)
\(\Rightarrow2^n=2^6\)
\(\Rightarrow n=6\)
d)
\(\Rightarrow\left(2^5\right)^{-n}.\left(2^4\right)^n=2048\)
\(\Rightarrow2^{n-5n}=2^{11}\)
\(\Rightarrow-4n=11\)
\(\Rightarrow n=-\frac{4}{11}\)