Chương I : Số hữu tỉ. Số thực

NH

1,tìm x, biết

a,\(4\dfrac{1}{3}_{ }\):\(\dfrac{x}{4}\)=6:0,3

b (\(2^3\):4).\(2^{x+1}\)=64

c, (x-1)\(^5\)=-32

d, \(|3-2x|-3=-3\)

e, \(|x+\dfrac{4}{5}|-\dfrac{1}{7}=0\)

2, Tìm x,y,z biết:

2x=3y=6z

Và x+y+z=1830

HP
25 tháng 9 2018 lúc 19:41

Bài 1:

a) \(4\dfrac{1}{3}:\dfrac{x}{4}=6:0,3\)

\(\Rightarrow\dfrac{13}{3}.\dfrac{4}{x}=20\)

\(\Rightarrow\dfrac{52}{3x}=20\)

\(\Rightarrow52=20.3x\)

\(\Rightarrow60x=52\)

\(\Rightarrow x=\dfrac{13}{15}\)

b) \(\left(2^3:2^4\right).2^{x+1}=64\)

\(\Rightarrow2^{3-4}.2^{x+1}=64\)

\(\Rightarrow2^{-1}.2^{x+1}=64\)

\(\Rightarrow2^{-1+x+1}=64\)

\(\Rightarrow2^x=64\)

\(\Rightarrow2^x=2^6\)

\(\Rightarrow x=6\)

c) \(\left(x-1\right)^5=-32\)

\(\Rightarrow\left(x-1\right)^5=\left(-2\right)^5\)

\(\Rightarrow x-1=-2\)

\(\Rightarrow x=-2+1=-1\)

d) \(|3-2x|-3=-3\)

\(\Rightarrow|3-2x|=-3+3=0\)

\(\Rightarrow3-2x=0\)

\(\Rightarrow2x=3\)

\(\Rightarrow x=\dfrac{3}{2}\)

e) \(|x+\dfrac{4}{5}|-\dfrac{1}{7}=0\)

\(\Rightarrow|x+\dfrac{4}{5}|=\dfrac{1}{7}\)

\(\Rightarrow\left[{}\begin{matrix}x+\dfrac{4}{5}=\dfrac{1}{7}\\x+\dfrac{4}{5}=-\dfrac{1}{7}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=\dfrac{1}{7}-\dfrac{4}{5}\\x=-\dfrac{1}{7}-\dfrac{4}{5}\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}x=-\dfrac{23}{35}\\x=-\dfrac{33}{35}\end{matrix}\right.\)

Bình luận (0)
HP
25 tháng 9 2018 lúc 19:48

Bài 2:

Ta có:

\(2x=3y=6z\)

\(=\dfrac{x}{\dfrac{1}{2}}=\dfrac{y}{\dfrac{1}{3}}=\dfrac{z}{\dfrac{1}{6}}\)

\(=\dfrac{x+y+z}{\dfrac{1}{2}+\dfrac{1}{3}+\dfrac{1}{6}}\) ( Áp dụng tính chất dãy tỉ số bằng nhau )

\(=\dfrac{1830}{1}=1830\)

Với \(\left\{{}\begin{matrix}2x=1830\\3y=1830\\6z=1830\end{matrix}\right.\)

\(\Rightarrow\left\{{}\begin{matrix}x=915\\y=610\\z=305\end{matrix}\right.\)

Bình luận (0)

Các câu hỏi tương tự
GJ
Xem chi tiết
NH
Xem chi tiết
MN
Xem chi tiết
HN
Xem chi tiết
H24
Xem chi tiết
SL
Xem chi tiết
KB
Xem chi tiết
SL
Xem chi tiết
NA
Xem chi tiết