Violympic toán 8

TT

1:Hai tiếp tuyến A và B của đg tròn (O;R) Cắt nhau tại M .Bt Ma= R√3.tìm số đo góc AOB bằng bn?

2 tìm GTNN của BT

A= x^2 + 2xy+2y^2-2x+4y+2

Xảy ra khi 4x+y

3 Tìm GTNN của

B=3x^2 +x+7

m.n giúp mk mấy bài này nhé ...cho mk xin lời giải chi tiết vs ...mơn nhìu😘😘😘

HH
11 tháng 11 2017 lúc 20:47

A=x2+2xy+2y2-2x-4y+2

=x2+xy-x+y2+xy-y-x-y+1+y2-2y+1

=(x2+xy-x)+(y2+xy-y)-(x+y-1)+(y2-2y+1)

= x(x+y-1)+y(y+x-1)-(x+y-1)+(y-1)2

=(x+y-1)(x+y-1)+(y-1)2

A=(x+y-1)2+(y-1)2

do (x+y-1)2\(\ge0\forall x;y\)

(y-1)2\(\ge0\forall y\)

=>(x+y-1)2+(y-1)2\(\ge0\)

=>Min A=0 khi

x+y-1=0

=>x+y=1 (*)

y-1=0

=>y=1

thay y=1 vào (*) ta đc

x+1=1

=>x=0

vậy....

Bình luận (0)
NN
11 tháng 11 2017 lúc 20:49

3) \(B=3x^2+x+7\)

\(\Leftrightarrow B=3x^2+x+\dfrac{1}{12}+\dfrac{83}{12}\)

\(\Leftrightarrow B=3\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{83}{12}\)

\(\Leftrightarrow B=3\left[x^2+2.x.\dfrac{1}{6}+\left(\dfrac{1}{6}\right)^2\right]+\dfrac{83}{12}\)

\(\Leftrightarrow B=3\left(x+\dfrac{1}{6}\right)^2+\dfrac{83}{12}\)

Vậy GTNN của \(B=\dfrac{83}{12}\) khi \(x+\dfrac{1}{6}=0\Leftrightarrow x=\dfrac{-1}{6}\)

Bình luận (0)
KK
11 tháng 11 2017 lúc 21:07

B=3x2 +x+7

=3x2+x+\(\dfrac{1}{12}+\dfrac{83}{12}\)

=3\(\left(x^2+\dfrac{1}{3}x+\dfrac{1}{36}\right)+\dfrac{83}{12}\)

=3 \(\left(x+\dfrac{1}{6}\right)^2+\dfrac{83}{12}\)

do \(\left(x+\dfrac{1}{6}\right)^2\ge0\forall x\)

=> \(3\left(x+\dfrac{1}{6}\right)^2\ge0\)

=> 3\(\left(x+\dfrac{1}{6}\right)^2+\dfrac{83}{12}\ge\dfrac{83}{12}\)

GTNN B=\(\dfrac{83}{12}\)

khi x+\(\dfrac{1}{6}\) =0

=>x=-\(\dfrac{1}{6}\)

Bình luận (0)

Các câu hỏi tương tự
VC
Xem chi tiết
TN
Xem chi tiết
LD
Xem chi tiết
NN
Xem chi tiết
H24
Xem chi tiết
HL
Xem chi tiết
TH
Xem chi tiết
PL
Xem chi tiết
MD
Xem chi tiết