Bài 2: Phương trình mặt phẳng

PT

1)cho d: \(\frac{x-7}{7}=\frac{y-5}{5}=\frac{z}{3}\) và d': \(\left\{\begin{matrix}x=2t\\y=-t\\z=2-3t\end{matrix}\right.\)

cho hai điểm A,B di dộng trên d sao cho AB=3, C,D di động trên d' sao cho CD=4. tính thể tích tứ diện ABCD

2) cho đường thẳng \(d_k\): \(\frac{x-3}{k+1}=\frac{y+1}{2k+3}=\frac{z+1}{1-k}\)

CMR \(d_k\)luôn nằm trong 1 mp cố định. Viết PTMP đó

Xác điịnh k để \(d_k\)song vs 2 mp 6x-y-3z-13=0 và x-y+2z-3=0

AH
11 tháng 2 2017 lúc 0:54

Câu 2)

Giả sử tồn tại MP cố định đó. Gọi PTMP mà \((d_k)\) luôn đi qua là

\((P):a(x-3)+b(y+1)+c(z+1)=0\) $(1)$

Ta chỉ cần xác định được \(a,b,c\) nghĩa là đã chứng minh được sự tồn tại của mặt phẳng cố định đó.

\(d_k\in (P)\forall k\Rightarrow \overrightarrow{u_{d_k}}\perp \overrightarrow {n_P}\)

\(\Rightarrow a(k+1)+b(2k+3)+c(1-k)=0\) với mọi $k$

\(\Leftrightarrow k(a+2b-c)+(a+3b+c)=0\) với mọi $k$

\(\Leftrightarrow \left\{\begin{matrix} a+2b-c=0\\ a+3b+c=0\end{matrix}\right.\)

Từ đây ta suy ra \(a=\frac{-5b}{2}\)\(c=\frac{-b}{2}\)

Thay vào \((1)\) và triệt tiêu \(b\) (\(b\neq 0\) bởi vì nếu không thì \(a=c=0\) mặt phẳng không xác định được)

\(\Rightarrow (P): -5x+2y-z+16=0\)

\((d_k)\parallel (6x-y-3z-13=0(1),x-y+2z-3=0(2))\)

\(\Leftrightarrow \overrightarrow {u_{d_k}}\perp \overrightarrow {n_1},\overrightarrow{n_2}\)\(\Rightarrow \overrightarrow{u_{d_k}}\parallel[\overrightarrow{n_1},\overrightarrow{n_2}]\)

\(\overrightarrow{n_1}=(6,-1,-3);\overrightarrow{n_2}=(1,-1,2)\)

\(\Rightarrow \overrightarrow{u_{d_k}}\parallel(-5,-15,-5)\) hay \(\frac{k+1}{-5}=\frac{2k+3}{-15}=\frac{1-k}{-5}\Rightarrow k=0\)

Bình luận (0)
AH
11 tháng 2 2017 lúc 0:56

Câu 1 mình đặt ẩn nhưng dài quá nhác viết, với lại mình thấy nó không hay và hiệu quả. Mình nghĩ với cách cho giá trị AB,CD cụ thể thế kia thì chắc chắn có cách nhanh gọn hơn. Nếu bạn có lời giải rồi thì post lên cho mình xem ké với.

Bình luận (1)

Các câu hỏi tương tự
H24
Xem chi tiết
TL
Xem chi tiết
PT
Xem chi tiết
VN
Xem chi tiết
NT
Xem chi tiết
AD
Xem chi tiết
TN
Xem chi tiết
TR
Xem chi tiết
LD
Xem chi tiết