Chương 3: PHƯƠNG TRÌNH, HỆ PHƯƠNG TRÌNH

PA

1)\(\begin{cases}y^3\left(3x^2-4x-23\right)=8-8y\\y^2\left(x^3+10x+27\right)=8x+6y\end{cases}\)

2\(\begin{cases}2\sqrt{x^2+5x-y+2}-2=\sqrt{y^2+8x}+x\\2y-\sqrt{x+1}=x+5\end{cases}\)

H24
31 tháng 8 2016 lúc 8:54

2)ĐK:\(\begin{cases}x\ge-1\\...\\y^2+8x\ge0\end{cases}\)

pt(1)\(\Leftrightarrow2\left[\sqrt{x^2+5x-y+2}-\left(x+2\right)\right]+\left(x+2-\sqrt{y^2+8x}\right)=0\)

 

\(\Leftrightarrow\left(x-y-2\right)\left(\frac{2}{\sqrt{x^2+5x-y+2}+x+2}+\frac{x+y-2}{x+2+\sqrt{y^2+8x}}\right)=0\)

\(\Rightarrow\)y=x-2

Thay vào pt(2) ta được:x-9=\(\sqrt{x+1}\)

\(\Leftrightarrow\begin{cases}x\ge9\\x^2-19x+80=0\end{cases}\Leftrightarrow x=\frac{19+\sqrt{41}}{2}}\)

\(\Rightarrow\)(x;y)=(\(\frac{19+\sqrt{41}}{2};\frac{15+\sqrt{41}}{2}\))(t/m)

Bình luận (0)

Các câu hỏi tương tự
PA
Xem chi tiết
PA
Xem chi tiết
ND
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
PA
Xem chi tiết
NA
Xem chi tiết