Chỉ so sánh được thôi k tính được bạn ak
Theo mình thì đề bài đầy đủ là như thế này :
So sánh \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2015\cdot2016}\)với \(\frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\).
Giải :
Ta có : \(\frac{1}{1\cdot2}+\frac{1}{3\cdot4}+\frac{1}{5\cdot6}+...+\frac{1}{2015\cdot2016}\)
\(=1-\frac{1}{2}+\frac{1}{3}-\frac{1}{4}+\frac{1}{5}-\frac{1}{6}+...+\frac{1}{2015}-\frac{1}{2016}\)
\(=\left(1+\frac{1}{3}+\frac{1}{5}+...+\frac{1}{2015}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+\frac{1}{4}+\frac{1}{5}+\frac{1}{6}+...+\frac{1}{2015}+\frac{1}{2016}\right)-\left(\frac{1}{2}+\frac{1}{4}+\frac{1}{6}+...+\frac{1}{2016}\right)\cdot2\)
\(=\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{2016}\right)-\left(1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{1008}\right)\)
\(=\frac{1}{1009}+\frac{1}{1010}+\frac{1}{1011}+...+\frac{1}{2016}< \frac{1}{1008}+\frac{1}{1009}+\frac{1}{1010}+...+\frac{1}{2016}\)
Chúc bạn học tốt!
Cô mình nói có thể để kết quả đến cuối cùng mà không cần tính vì số to
VD:số có mũ 1000,100,...
cho mình cái đúng với