Đại số lớp 6

DH

1. Tính nhanh :

\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

2. Tính nhanh :

\(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)

3. Tính nhanh :

\(\dfrac{1}{2}+\dfrac{1}{14}+\dfrac{1}{35}+\dfrac{1}{65}+\dfrac{1}{104}+\dfrac{1}{152}\)

4. Chứng minh rằng :

\(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}\)\(< 1\)

CD
12 tháng 3 2017 lúc 14:45

1. Tính nhanh:

\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

\(=\dfrac{1}{2.3}+\dfrac{1}{3.4}+\dfrac{1}{4.5}+\dfrac{1}{5.6}+\dfrac{1}{6.7}+\dfrac{1}{7.8}\)

\(=\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

\(=\dfrac{1}{2}-\dfrac{1}{8}\)

\(=\dfrac{3}{8}\)

Bình luận (0)
CD
12 tháng 3 2017 lúc 14:50

2. Tính nhanh

Đặt \(A\) = \(\dfrac{1}{15}+\dfrac{1}{35}+\dfrac{1}{63}+\dfrac{1}{99}+\dfrac{1}{143}\)

\(A\) \(=\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)

\(2A=\dfrac{1}{3}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{9}+\dfrac{1}{9}-\dfrac{1}{11}+\dfrac{1}{11}-\dfrac{1}{13}\)

\(2A=\dfrac{1}{3}-\dfrac{1}{13}\)

\(2A=\dfrac{10}{39}\)

\(A=\dfrac{10}{39}:2\)

\(A=\dfrac{5}{39}\)

Bình luận (0)
HD
12 tháng 3 2017 lúc 13:08

câu 1 :\(\dfrac{1}{6}+\dfrac{1}{12}+\dfrac{1}{20}+\dfrac{1}{30}+\dfrac{1}{42}+\dfrac{1}{56}\)

=>1/2.3+1/3.4+1/4.5+1/5.6+1/6.7+1/7.8

=>\(\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{5}+\dfrac{1}{5}-\dfrac{1}{6}+\dfrac{1}{6}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{8}\)

=>\(\dfrac{1}{2}-\dfrac{1}{8}\)=3/8

Bình luận (0)
HD
12 tháng 3 2017 lúc 13:14

câu2 Đặt A = 1/15+...+1/143

1/15+1/35+1/63+1/99+1/143

=>A=\(\dfrac{1}{3.5}+\dfrac{1}{5.7}+\dfrac{1}{7.9}+\dfrac{1}{9.11}+\dfrac{1}{11.13}\)

=>2A= 1/3 - 1/13

=>2A= 10/39

=>A=10/39 : 2

=>A=5/39

Bình luận (0)
HD
12 tháng 3 2017 lúc 13:23

câu 3:

=2/4+2/28+2/70+2/130+2/208+2/304

=2/3.(2/1.4+2/4.7+2/7.10+2/10.13+2/13.16+2/16.19

=2/3.(1-1/19)

=12/19

Bình luận (0)
CD
12 tháng 3 2017 lúc 15:04

3. Tính nhanh

\(\dfrac{1}{2}+\dfrac{1}{14}+\dfrac{1}{35}+\dfrac{1}{65}+\dfrac{1}{104}+\dfrac{1}{152}\)

\(=\dfrac{1}{1.2}+\dfrac{1}{2.7}+\dfrac{1}{7.5}+\dfrac{1}{5.13}+\dfrac{1}{13.8}+\dfrac{1}{8.19}\)

\(=\dfrac{2}{1.4}+\dfrac{2}{4.7}+\dfrac{2}{7.10}+\dfrac{2}{10.13}+\dfrac{2}{13.16}+\dfrac{2}{16.19}\)

\(=\dfrac{2}{3}.\left(\dfrac{3}{1.4}+\dfrac{3}{4.7}+\dfrac{3}{7.10}+\dfrac{3}{10.13}+\dfrac{3}{13.16}+\dfrac{3}{16.19}\right)\)

\(=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{4}+\dfrac{1}{4}-\dfrac{1}{7}+\dfrac{1}{7}-\dfrac{1}{10}+\dfrac{1}{10}-\dfrac{1}{13}+\dfrac{1}{13}-\dfrac{1}{16}+\dfrac{1}{16}-\dfrac{1}{19}\right)\)\(=\dfrac{2}{3}.\left(\dfrac{1}{1}-\dfrac{1}{19}\right)\)

\(=\dfrac{2}{3}.\dfrac{18}{19}\)

\(=\dfrac{12}{19}\)

Bình luận (0)
CD
12 tháng 3 2017 lúc 15:10

4. Chứng minh rằng:

Đặt \(A=\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< 1\)

\(\dfrac{1}{2^2}< \dfrac{1}{1.2}\)

\(\dfrac{1}{3^2}< \dfrac{1}{2.3}\)

\(\dfrac{1}{4^2}< \dfrac{1}{3.4}\)

\(.....\)

\(\dfrac{1}{10^2}< \dfrac{1}{9.10}\)

\(A=\) \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1.2}+\dfrac{1}{2.3}+\dfrac{1}{3.4}+...+\dfrac{1}{9.10}\)\(A=\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< \dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+\dfrac{1}{3}-\dfrac{1}{4}+...+\dfrac{1}{9}-\dfrac{1}{10}\)

\(A< \dfrac{1}{1}-\dfrac{1}{10}\)

\(A< 1\) nên \(\dfrac{1}{2^2}+\dfrac{1}{3^2}+\dfrac{1}{4^2}+...+\dfrac{1}{10^2}< 1\)

Bình luận (0)

Các câu hỏi tương tự
NN
Xem chi tiết
KL
Xem chi tiết
KL
Xem chi tiết
KL
Xem chi tiết
LY
Xem chi tiết
NQ
Xem chi tiết
CH
Xem chi tiết
HD
Xem chi tiết
KL
Xem chi tiết