Chương I - Căn bậc hai. Căn bậc ba

DN

1. Tim x de \(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\) voi \(x>0\), \(x\ne1\), \(x\ne2\)

2. So sanh \(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}\) voi \(\dfrac{1}{3}\)

AL
19 tháng 2 2019 lúc 15:28

1 )Ta có :

\(\dfrac{\sqrt{x}-2}{3\sqrt{x}}>\dfrac{1}{6}\)

\(\Rightarrow6\left(\sqrt{x}-2\right)>3\sqrt{x}\)

\(\Rightarrow6\sqrt{x}-3\sqrt{x}-2>0\)

\(\Rightarrow3\sqrt{x}>2\)

\(\Rightarrow\sqrt{x}>\dfrac{2}{3}\)

\(\Rightarrow x>\dfrac{4}{9}\)

2)

Giả sử

\(\dfrac{\sqrt{x}}{x+\sqrt{x}+1}>\dfrac{1}{3}\)

=> \(3\sqrt{x}>x+\sqrt{x}+1\)

\(\Rightarrow x+\sqrt{x}+1-3\sqrt{x}< 0\)

\(\Rightarrow\left(x-2\sqrt{x}+1\right)< 0\Leftrightarrow\left(\sqrt{x-1}\right)^2< 0\) ( vô lí )

Bất đẳng thức trên là sai, mà các phép biến dổi là tương đương

\(\Rightarrow\dfrac{\sqrt{x}}{x+\sqrt{x}+1}< \dfrac{1}{3}\)

Bình luận (1)