Bài 1:
a) Gọi d∈UC(n;2n+1)
⇔n⋮d và 2n+1⋮d
⇔2n⋮d và 2n+1⋮d
Áp dụng tính chất chia hết cho một hiệu, ta được
2n-2n-1⋮d
hay -1⋮d
⇔d∈Ư(-1)
⇔d∈{-1;1}
mà -1<1
nên UCLN(n;2n+1)=1
Vậy: UCLN(n;2n+1)=1
b) Gọi e∈ƯC(3n+1; 4n+1)
⇔3n+1⋮e và 4n+1⋮e
⇔4(3n+1)⋮e và 3(4n+1)⋮e
⇔12n+4⋮e và 12n+3⋮e
Áp dụng tính chất chia hết của một hiệu, ta được
12n+4-(12n+3)⋮e
⇔12n+4-12n-3⋮e
⇔1⋮e
hay e=1
Vậy: UCLN(3n+1; 4n+1)=1