Violympic toán 7

PH

1 ) tìm giá trị nhỏ nhất của biểu thức : A = | x - 2017 | + | x + 2018 |

2 ) chứng minh : 1 + 1/1! + 1/2! + 1/3! + ... + 1/2017! <3 Các cậu giúp tớ với yeu Tớ cần gấp lắm ấy ạ
DH
8 tháng 9 2017 lúc 16:45

Bài 1:

Ta có: \(\left|x-2017\right|+\left|x+2018\right|=\left|2017-x\right|+\left| x+2018\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\) ta có:

\(\left|2017-x\right|+\left|x+2018\right|\ge\left|2017-x+x+2018\right|=4035\)

Dấu "=" sảy ra khi và chỉ khi:

\(\left\{{}\begin{matrix}2017-x\ge0\\x+2018\ge0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}x\le2017\\x\ge-2018\end{matrix}\right.\Rightarrow-2018\le x\le2017\)

Vậy.....................

Bài 2:

Ta có:

\(\left\{{}\begin{matrix}\dfrac{1}{2!}=\dfrac{1}{1.2}\\\dfrac{1}{3!}=\dfrac{1}{2.3}\\.....\\\dfrac{1}{2017!}< \dfrac{1}{2016.2017}\end{matrix}\right.\)

\(\Rightarrow1+\dfrac{1}{1!}+\dfrac{1}{2!}+....+\dfrac{1}{2017!}< 1+1+\dfrac{1}{1.2}+...+\dfrac{1}{2016.2017}\)

Ta lại có:

\(1+1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{2016.2017}\)

\(=2+\dfrac{1}{1}-\dfrac{1}{2}+\dfrac{1}{2}-\dfrac{1}{3}+....+\dfrac{1}{2016}-\dfrac{1}{2017}\)

\(=2+1-\dfrac{1}{2017}=3-\dfrac{1}{2017}\)

\(\Rightarrow1+1+\dfrac{1}{1.2}+\dfrac{1}{2.3}+....+\dfrac{1}{2016.2017}< 3\)

Do đó: \(1+\dfrac{1}{1!}+\dfrac{1}{2!}+\dfrac{1}{3!}+....+\dfrac{1}{2017!}< 3\)(đpcm)

Chúc bạn học tốt!!!

Bình luận (8)

Các câu hỏi tương tự
TN
Xem chi tiết
DX
Xem chi tiết
PH
Xem chi tiết
VN
Xem chi tiết
LD
Xem chi tiết
PH
Xem chi tiết
LD
Xem chi tiết
DX
Xem chi tiết
A3
Xem chi tiết