Chương I - Căn bậc hai. Căn bậc ba

CN

1) Giải phương trình:

a) \(\sqrt{x^2+2x}-x-1+\dfrac{2\left(x-1\right)}{\sqrt{x^2+2x}}=0\)

b) \(\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(1+\sqrt{9x^2+18x+8}\right)=2\)

PA
14 tháng 9 2017 lúc 21:42

\(\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{9x^2+18x+8}+1\right)=2\)

\(\Leftrightarrow\left(\sqrt{3x+4}-\sqrt{3x+2}\right)\left(\sqrt{\left(3x+4\right)\left(3x+2\right)}+1\right)=2\)

Đặt \(\left\{{}\begin{matrix}\sqrt{3x+4}=a\\\sqrt{3x+2}=b\end{matrix}\right.\)\(\left(a,b\ge0\right)\), ta có hpt:

\(\left\{{}\begin{matrix}a^2-b^2=2\left(1\right)\\\left(a-b\right)\left(ab+1\right)=2\end{matrix}\right.\)

\(\Leftrightarrow a^2-b^2=\left(a-b\right)\left(ab+1\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b\right)-\left(a-b\right)\left(ab+1\right)\)

\(\Leftrightarrow\left(a-b\right)\left(a+b-ab-1\right)=0\)

\(\Leftrightarrow\left(a-b\right)\left(b-1\right)\left(1-a\right)=0\)

* Trường hợp 1: \(a-b=0\Leftrightarrow a=b\)

\(\Rightarrow\sqrt{3x+4}=\sqrt{3x+2}\)

\(\Leftrightarrow0x=\sqrt{2}-2\)

=> Pt vô no

* Trường hợp 2: \(b-1=0\Leftrightarrow b=1\)

\(\Rightarrow\sqrt{3x+2}=1\)

\(\Leftrightarrow x=-\dfrac{1}{3}\left(n\right)\)

* Trường hợp 3: \(a-1=0\Leftrightarrow a=1\)

\(\Rightarrow\sqrt{3x+4}=1\)

\(\Rightarrow x=-1\left(l\right)\)

Vậy x = \(-\dfrac{1}{3}\)

Bình luận (6)

Các câu hỏi tương tự
QE
Xem chi tiết
LG
Xem chi tiết
HL
Xem chi tiết
HC
Xem chi tiết
AQ
Xem chi tiết
DD
Xem chi tiết
TD
Xem chi tiết
QE
Xem chi tiết
HC
Xem chi tiết