Ôn tập toán 6

DG

1. CMR:

a) D = \(6+6^2+6^3+......+6^{99}+6^{100}\) chia hết cho 7

b) E = \(3^{n+3}+2^{n+3^{ }}+3^{n+1}+2^{n+2}\) chia hết cho 6
 

TM
29 tháng 10 2016 lúc 17:15

Ta có : Số số hạng của dãy số D chính là khoảng cách từ 1-->100 , mỗi số cách nhau 1 đơn vị .

=> Số số hạng của dãy số D là : \(\frac{100-1}{1}+1=100\) ( số hạng )

Vậy ta có số nhóm là : 100 : 2 = 50 ( nhóm )

\(D=\left(6+6^2\right)+\left(6^3+6^4\right)+...+\left(6^{99}+6^{100}\right)\)

\(D=\left(6+6^2\right)+6^2\left(6+6^2\right)+...+6^{98}\left(6+6^2\right)\)

\(D=1.42+6^2.42+...+6^{98}.42\)

\(D=\left(1+6^2+...+6^{98}\right).42\)

Vì : 42 = 6 . 7 . Mà : \(1+6^2+...+6^{98}\in N\) \(\Rightarrow D⋮7\)

Vậy : \(D⋮7\)

b, \(E=3^{n+3}+2^{n+3}+3^{n+1}+2^{n+2}\)

\(E=3^n.3^3+2^n.2^3+3^n.3+2^n.2^2\)

\(E=3^n.3^3+3^n.3+2^n.2^3+2^n.2^2\)

\(E=3^n\left(3^3+3\right)+2^n\left(2^3+2^2\right)\)

\(E=3^n.30+2^n.12\)

\(E=3^n.5.6+2^n.2.6\)

\(E=\left(3^n.5+2^n.2\right).6\)

Mà : \(3^n.5+2^n.2\in N\Rightarrow E⋮6\)

Vậy : \(E⋮6\)

Bình luận (1)
NP
29 tháng 10 2016 lúc 17:48

a)D=6+62+63+...+699+6100

D=(6+62)+(63+64)+...+(699+6100)

D=42.1+62..42+...+698.42

D=42.(1+62+...+698)\(⋮\)7

\(\Rightarrow\)D\(⋮\)7

 

Bình luận (0)
ND
29 tháng 10 2016 lúc 18:12

\(6D=6^2+6^3+...+6^{101}\)

\(\Rightarrow5D=6D-D=6^{101}-6=6\left(6^{100}-1\right)\)

Ta chứng minh được \(6^{100}-1\) chia hết cho 7

Cụ thể là 6 đồng dư với \(-1\left(mod7\right)\Rightarrow6^{100}\) đồng dư với \(\left(-1\right)^{100}=1\left(mod7\right)\)

\(\Rightarrow6^{100}-1\) chia hết cho 7
Vậy \(5D\) chia hết cho 7 mà \(UCLN\left(5;7\right)=1\) suy ra D chia hết 7

Bình luận (1)
ND
29 tháng 10 2016 lúc 18:14

\(E=3^n\left(3^3+3\right)+2^{n+1}\left(2^2+2\right)\\ =3^n.30+6.2^{n+1}⋮6\)

Bình luận (1)

Các câu hỏi tương tự
LM
Xem chi tiết
HH
Xem chi tiết
NP
Xem chi tiết
KD
Xem chi tiết
LA
Xem chi tiết
PL
Xem chi tiết
NH
Xem chi tiết
NH
Xem chi tiết
HN
Xem chi tiết