Violympic toán 7

TC

1 Chứng tỏ rằng :
a) 0,(43) + 0,(56) = 1
b) 0,(333) . 3 = 1

2. Cho \(\dfrac{a}{b}=\dfrac{c}{d}\) Chứng minh \(\dfrac{a}{3a+b}=\dfrac{c}{3c+d}\)

3. Tìm a,b,c
\(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\) và a + 2b - 3c = -20

TH
25 tháng 10 2017 lúc 16:29

3.

Ta có: \(\dfrac{a}{2}=\dfrac{b}{3}=\dfrac{c}{4}\Leftrightarrow\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}\)\(a+2b-3c=-20\)

Áp dụng tính chất dãy tỉ số bằng nhau ta có:

\(\dfrac{a}{2}=\dfrac{2b}{6}=\dfrac{3c}{12}=\dfrac{a+2b-3c}{2+6-12}=\dfrac{-20}{-4}=5\)

+) \(\dfrac{a}{2}=5\Rightarrow a=5.2=10\)

+) \(\dfrac{2b}{6}=5\Rightarrow2b=5.6=30\Rightarrow b=30:2=15\)

+) \(\dfrac{3c}{12}=5\Rightarrow3c=5.12=60\Rightarrow c=60:3=20\)

Vậy ...

Bình luận (0)
PN
25 tháng 10 2017 lúc 16:37

3.

ta có:\(\dfrac{a}{2}\)=\(\dfrac{b}{3}\)=\(\dfrac{c}{4}\)=>\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\) và a+2b-3c=-20

áp dụng tính chất của dãy tỉ số bằng nhau ta có

\(\dfrac{a}{2}\)=\(\dfrac{2b}{6}\)=\(\dfrac{3c}{12}\)=\(\dfrac{a+2b-3c}{2+6-12}\)\(\dfrac{-20}{-4}\)=5

\(\dfrac{a}{2}\)=5=>a=2.5=10

\(\dfrac{2b}{6}\)=5=>2b=5.6=30=>b=30:2=15

\(\dfrac{3c}{12}\)=5=>3c=5.12=60=>c=60:3=20

vậy a=10,b=15,c=20

chúc bạn hok tốt

Bình luận (0)

Các câu hỏi tương tự
MT
Xem chi tiết
N2
Xem chi tiết
NT
Xem chi tiết
MN
Xem chi tiết
TK
Xem chi tiết
TT
Xem chi tiết
HD
Xem chi tiết
HK
Xem chi tiết
NH
Xem chi tiết