Phép nhân và phép chia các đa thức

NB

1. Chứng minh các số sau đây không phải là số chính phương :

a. 1+1919+93199+19931994

b. Tổng của 3 số chính phương liên tiếp

2. Chứng minh rằng nếu mỗi số m, n là tổn của hai số chính phương thì tick m.n cũng là tổng của 2 số chính phương.

HELP ME PLEASE!leuleu

PT
9 tháng 7 2017 lúc 20:57

1. a) Đặt \(A=1+19^{19}+93^{199}+1993^{1994}\)

\(\Rightarrow A=1+\left(19\right)^{19}+\left(93^2\right)^{99}.93+\left(1993^2\right)^{997}\)

\(=1+\left(...9\right)+\left(...9\right).93+\left(...9\right)\)

\(=...26\)

Nếu là số chính phương có chữ số tận cùng là 6 thì hàng chục là số lẻ.

Ở đây ta thấy hàng chục là số 2 ( số chẵn )

\(\Rightarrow\) \(1+19^{19}+93^{199}+1993^{1994}\) không phải là số chính phương.

b) \((2k+1).2k.(2k-1) \)

\((2k+1)^2 +4k^2 +(2k-1)^2\)

\(=4k^2 +4k +1 +4k^2 +4k^2 -4k +1\)

\(=12k^2+2\) chia hết cho 2 không chia hết cho 4.

\(\Rightarrow\) Tổng của 3 số chính phương liên tiếp không phải là số chính phương.

2. Câu hỏi của Trần Nhật Ái - Toán lớp 8

Bình luận (6)

Các câu hỏi tương tự
H24
Xem chi tiết
CJ
Xem chi tiết
H24
Xem chi tiết
NA
Xem chi tiết
MC
Xem chi tiết
HL
Xem chi tiết
QN
Xem chi tiết
NK
Xem chi tiết
PN
Xem chi tiết