( x + y )2 = 1 = x2 + y2 + 2xy =25 + 2xy
\(\Rightarrow xy=\frac{1-25}{2}=-12\)
\(\left(a^2+b^2\right)^2-4a^2b^2=\left(a^2-b^2\right)^2=25\)
1. (x+y)2 = 9
-> xy = ( 9 - 5 ) : 2 = 2
x3 + y3 = ( x+ y ) ( x2 + y2 -xy ) = 3 . ( 5 - 2 ) = 9
@Lovers giup nha
Phương An
chỉ đáp án thôi
x + y = 3
(x + y)2 = 9
x2 + y2 + 2xy = 9
5 + 2xy = 9
2xy = 9 - 5
2xy = 4
xy = 4 : 2
xy = 2
x3 + y3 = (x + y)(x2 - xy + y2) = 3 . (5 - 2) = 3 . 3 = 9
x + y = 1
(x + y)2 = 1
x2 + 2xy + y2 = 1
25 + 2xy = 1
2xy = 1 - 25
2xy = - 24
xy = - 24 : 2
xy = -12
(a2 + b2)2 - 4a2b2 = (a2 + b2 - 2ab)(a2 + b2 + 2ab) = (a - b)2(a + b)2 = [(a + b)(a - b)]2 = (a2 - b2)2 = 52 = 25
(a2 + b2)2 - 4a2b2 = (a2 - b2)2 = 25
1. \(x+y=3\)
\(\Rightarrow\) \(\left(x+y\right)^2=9\)
\(\Leftrightarrow\) \(x^2+y^2+2xy=9\)
\(\Leftrightarrow\) \(5+2xy=9\) \(\Rightarrow\) \(xy=\frac{9-5}{2}=2\)
\(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\)
\(=\) \(3\left(5-2\right)=9\)