Chương I: VÉC TƠ

HH

1 . Cho tứ giác ABDC , xác định vị trí điểm G sao cho \(\overrightarrow{GA}+\overrightarrow{GB}+\overrightarrow{GC}+\overrightarrow{GD}=\overrightarrow{0}\)

HH
30 tháng 9 2019 lúc 17:56

Lâu ko động đến vecto :)

Tứ giác ABCD chứ nhỉ? Thôi ko sao tôi ad tứ giác ABCD cho thuận, còn nếu là ABDC thì cậu tự đổi lại

Gọi I là TĐ của AB, K là TĐ của CD

\(\Rightarrow\overrightarrow{GI}+\overrightarrow{IA}+\overrightarrow{GI}+\overrightarrow{IB}+\overrightarrow{GI}+\overrightarrow{IC}+\overrightarrow{GI}+\overrightarrow{ID}=\overrightarrow{0}\)

\(\Leftrightarrow4\overrightarrow{GI}+\overrightarrow{IC}+\overrightarrow{ID}=\overrightarrow{0}\left(\overrightarrow{IA}+\overrightarrow{IB}=\overrightarrow{0}\right)\) vì I là TĐ AB

Có K là TĐ CD=> \(\overrightarrow{IC}+\overrightarrow{ID}=2\overrightarrow{IK}\)

\(\Rightarrow4\overrightarrow{GI}+2\overrightarrow{IK}=\overrightarrow{0}\Leftrightarrow2\overrightarrow{GI}=\overrightarrow{KI}\)

Vậy lấy G sao cho \(\left\{{}\begin{matrix}2\overrightarrow{GI}\uparrow\uparrow\overrightarrow{KI}\\KI=2GI\end{matrix}\right.\)

Đoán chắc G là trung điểm IK :D

Bình luận (0)

Các câu hỏi tương tự
HT
Xem chi tiết
H24
Xem chi tiết
QM
Xem chi tiết
YY
Xem chi tiết
TG
Xem chi tiết
HT
Xem chi tiết
H24
Xem chi tiết
TN
Xem chi tiết
HT
Xem chi tiết