Bài 2: Tích phân

H24

1, Cho hàm số f(x) liên tục trên đoạn \([\frac{2}{3};1]\) và thỏa mãn \(2f\left(x\right)+3f\left(\frac{2}{3x}\right)=5x\) với \(\forall x\in\left[\frac{2}{3};1\right]\). Tính tích phân \(I=\int\limits^1_{\frac{2}{3}}\frac{f\left(x\right)}{x}dx\)

2, Cho hàm số f(x) liên tục trên đoạn [0,2] và thoản mãn \(3f\left(x\right)-4f\left(2-x\right)=-x^2-12x+16\) với \(\forall x\in\left[0;2\right]\). Tính tích phân \(I=\int\limits^2_0f\left(x\right)dx\)

3, Cho hàm số f(x) liên tục trên R và thỏa mãn \(f\left(x\right)=4xf\left(x^2\right)+2x+1\) với \(\forall x\in R\) . Tính tích phân \(I=\int\limits^1_0f\left(x\right)dx\)

NL
6 tháng 4 2019 lúc 19:24

Câu 1:

\(2f\left(x\right)+3f\left(\frac{2}{3x}\right)=5x\) (1)

Đặt \(t=\frac{2}{3x}\Rightarrow x=\frac{2}{3t}\)

\(\Rightarrow2f\left(\frac{2}{3t}\right)+3f\left(t\right)=5.\frac{2}{3t}\Leftrightarrow2f\left(\frac{2}{3t}\right)+3f\left(t\right)=\frac{10}{3t}\)

\(\Rightarrow2f\left(\frac{2}{3x}\right)+3f\left(x\right)=\frac{10}{3x}\Leftrightarrow3f\left(\frac{2}{3x}\right)+\frac{9}{2}f\left(x\right)=\frac{5}{x}\) (2)

Trừ vế cho vế của (2) cho (1):

\(\frac{5}{2}f\left(x\right)=\frac{5}{x}-5x\Rightarrow f\left(x\right)=\frac{2}{x}-2x\)

\(\Rightarrow\int\limits^1_{\frac{2}{3}}\frac{f\left(x\right)}{x}dx=\int\limits^1_{\frac{2}{3}}\left(\frac{2}{x^2}-2\right)dx=\left(-\frac{2}{x}-2x\right)|^1_{\frac{2}{3}}=\frac{1}{3}\)

Bình luận (0)
NL
6 tháng 4 2019 lúc 19:31

Câu 2:

\(3f\left(x\right)-4f\left(2-x\right)=-x^2-12x+16\) (1)

Đặt \(2-x=t\Rightarrow x=2-t\)

\(\Rightarrow3f\left(2-t\right)-4f\left(t\right)=-\left(2-t\right)^2-12\left(2-t\right)+16\)

\(\Rightarrow3f\left(2-t\right)-4f\left(t\right)=-t^2+16t-12\)

\(\Rightarrow3f\left(2-x\right)-4f\left(x\right)=-x^2+16x-12\)

\(\Rightarrow4f\left(2-x\right)-\frac{16}{3}f\left(x\right)=-\frac{4}{3}x^2+\frac{64}{3}x-16\) (2)

Cộng (1) và (2):

\(-\frac{7}{3}f\left(x\right)=-\frac{14}{3}x^2+\frac{28}{3}x\)

\(\Rightarrow f\left(x\right)=2x^2-4x\)

\(\Rightarrow\int\limits^2_0f\left(x\right)dx=\int\limits^2_0\left(2x^2-4x\right)dx=-\frac{8}{3}\)

Bình luận (0)
NL
6 tháng 4 2019 lúc 19:52

Câu 3:

\(f\left(x\right)=4x.f\left(x^2\right)+2x+1\)

Lấy tích phân 2 vế:

\(I=\int\limits^1_0f\left(x\right)dx=\int\limits^1_04x^2f\left(x^2\right)dx+\int\limits^1_0\left(2x+1\right)dx=I_1+2\)

Xét \(I_1=\int\limits^1_04x.f\left(x^2\right)dx\)

Đặt \(x^2=t\Rightarrow2x.dx=dt;\) \(\left\{{}\begin{matrix}x=0\Rightarrow t=0\\x=1\Rightarrow t=1\end{matrix}\right.\)

\(\Rightarrow I_1=\int\limits^1_02.f\left(t\right).dt=2\int\limits^1_0f\left(x\right).dx=2I\)

\(\Rightarrow I=2I+2\Rightarrow I=-2\)

Vậy \(\int\limits^1_0f\left(x\right)dx=-2\)

Bình luận (0)

Các câu hỏi tương tự
SB
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
TT
Xem chi tiết
SK
Xem chi tiết
TC
Xem chi tiết
SK
Xem chi tiết
MT
Xem chi tiết
NT
Xem chi tiết