Violympic toán 8

PC

1. Cho A = \(\left(\frac{x^2-25}{x^3-10x^2+25}\right):\left(\frac{y-2}{y^2-y-2}\right)\)

Tính giá trị M biết: x2 + 9y2 - 4xy = 2xy - \(\left|x-3\right|\)

AH
2 tháng 3 2020 lúc 0:57

Lời giải:

ĐK: $x\neq 5;x\neq 0; y\neq 2; y\neq -1$

\(M=\frac{x^2-25}{x^3-10x^2+25x}:\frac{y-2}{(y-2)(y+1)}=\frac{(x-5)(x+5)}{x(x^2-10x+25)}:\frac{1}{y+1}\)

\(=\frac{(x-5)(x+5)}{x(x-5)^2}:\frac{1}{y+1}=\frac{x+5}{x(x-5)}.(y+1)=\frac{(x+5)(y+1)}{x(x-5)}\)

--------------

$x^2+9y^2-4xy=2xy-|x-3|$

$\Leftrightarrow x^2+9y^2-6xy=-|x-3|$

$\Leftrightarrow (x-3y)^2+|x-3|=0$

Dễ thấy $(x-3y)^2\geq 0; |x-3|\geq 0$ với mọi $x,y\in $ĐKXĐ nên để tổng của chúng bằng $0$ thì:

$x-3y=x-3=0\Rightarrow x=3; y=1$

Khi đó: $M=\frac{(3+5)(1+1)}{3(3-5)}=\frac{-8}{3}$

Bình luận (0)
 Khách vãng lai đã xóa

Các câu hỏi tương tự
LV
Xem chi tiết
NA
Xem chi tiết
DT
Xem chi tiết
H24
Xem chi tiết
MN
Xem chi tiết
BM
Xem chi tiết
PT
Xem chi tiết
NS
Xem chi tiết
NS
Xem chi tiết