Chương I - Căn bậc hai. Căn bậc ba

PT

1 . cho a , b , c là các số hữu tỉ , a ≠ b≠ c , a = b + c

chứng minh : \(\sqrt{\dfrac{1}{a^2}}+\sqrt{\dfrac{1}{b^2}}+\sqrt{\dfrac{1}{c^2}}\) là một số hữu tỉ

2 . cho a , b , c là các số hữu tỉ , a khác b khác c

chứng minh : \(\sqrt{\dfrac{1}{\left(a-b\right)^2}+\dfrac{1}{\left(b-c\right)^2}+\dfrac{1}{\left(c-a\right)^2}}\) là một số hữu tỉ

3 . cho a , b , c là các số hữu tỉ , ab + bc + ca = 1

chứng minh : \(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}\) là một số hữu tỉ

giúp mình nhanh nha

cảm ơn nhưng xin ko hậu tạ !!!!!!!!!!!!!!!!1

DD
11 tháng 7 2018 lúc 13:07

Câu 3 : Ta có :

\(\left\{{}\begin{matrix}a^2+1=a^2+ab+bc+ca=\left(a+b\right)\left(a+c\right)\\b^2+1=b^2+ab+bc+ca=\left(b+c\right)\left(b+a\right)\\c^2+1=c^2+ab+bc+ca=\left(c+a\right)\left(c+b\right)\end{matrix}\right.\)

Thay vào biểu thức ta được :

\(\sqrt{\left(a^2+1\right)\left(b^2+1\right)\left(c^2+1\right)}=\sqrt{\left(a+b\right)\left(a+c\right)\left(b+c\right)\left(b+a\right)\left(c+a\right)\left(c+b\right)}=\sqrt{\left[\left(a+b\right)\left(b+c\right)\left(c+a\right)\right]^2}=\left(a+b\right)\left(b+c\right)\left(c+a\right)\)

Vậy biểu thức trên là một số hữu tỉ .

Wish you study well !!!

Bình luận (1)
PT
12 tháng 7 2018 lúc 18:56

còn ai bik làm bài 1 , bài 2 nữa ko giúp mik vs

ngảy mai là đi học r

thanks

Bình luận (0)
NT
1 tháng 8 2018 lúc 20:02

Link câu 2:Câu hỏi của nguyen thi thu hien - Toán lớp 9 | Học trực tuyến

Bình luận (0)

Các câu hỏi tương tự
TH
Xem chi tiết
AD
Xem chi tiết
LN
Xem chi tiết
MT
Xem chi tiết
VT
Xem chi tiết
SV
Xem chi tiết
LM
Xem chi tiết
H24
Xem chi tiết
DT
Xem chi tiết