Hình học lớp 7

NB

1. Cho 4 điểm D, E, F sao cho DE//FK và EF//DK. CM: góc DEF = góc DFK.

2. Cho tam giác ABC. Trên các tia đối AB, AC lần lượt lấy các điểm E, F sao cho AE = AB, AF= AC. CM: BC//EF.

AT
19 tháng 11 2016 lúc 7:09

1) Ta có hình vẽ sau:

 

 

 

 

D E K F 1 1 2 2

Vì DE // FK nên \(\widehat{D_1}\) = \(\widehat{F_1}\) (so le trong) ; \(\widehat{D_2}\) = \(\widehat{F_2}\) (so le trong)

Xét ΔDEF và ΔDKF có:

\(\widehat{D_1}\) = \(\widehat{F_1}\) (cm trên)

DF : Cạnh chung

\(\widehat{D_2}\) = \(\widehat{F_2}\) (cm trên)

\(\Rightarrow\) ΔDEF = ΔDKF(g.c.g)

\(\Rightarrow\) \(\widehat{DEF}\) = \(\widehat{DKF}\) (2 góc tương ứng) (đpcm)

2) Ta có hình vẽ sau:

A B C 1 2 F E

Xét ΔABC và ΔAEF có:

AE = AB (gt)

\(\widehat{A_1}\) = \(\widehat{A_2}\) (đối đỉnh)

AF = AC (gt)

\(\Rightarrow\) ΔABC = ΔAEF (c.g.c)

\(\Rightarrow\) \(\widehat{ACB}\) = \(\widehat{EFA}\) (2 góc tương ứng)

Mà 2 góc này lại ở vị trí so le trong nên

\(\Rightarrow\) BC // EF (đpcm)

 

Bình luận (0)

Các câu hỏi tương tự
NB
Xem chi tiết
NT
Xem chi tiết
NB
Xem chi tiết
NB
Xem chi tiết
CN
Xem chi tiết
HN
Xem chi tiết
HN
Xem chi tiết
PH
Xem chi tiết
NP
Xem chi tiết