Ôn tập toán 7

TN

1. a) \(\frac{1}{1.2}+\frac{1}{2.3}+\frac{1}{3.4}+...+\frac{1}{99.100}\)

b) 6. \(\left(\frac{-1}{3}\right)^2\) - \(\left(\frac{1}{4}:2-\frac{7}{16}.\frac{-4}{21}\right)\)

2. Cho ba số a, b, c tỉ lệ với các số 2, 4, 5 và a - 20 = 24 (b +c). Tìm ba số a, b, c.

3.

a) Cho A= (-7) + (-7)2 + (-7)3 + ... + (-7)2007. CMR A chia hết cho 43.

b) Tìm các giá trị của x, y thỏa mãn: l2x -27l2011 + (3y +10)2012 = 0.

LÀM ĐC BÀI NÀO THÌ LÀM GIÚP NHA MN, HU HU HU! CẢM ƠN CÁC BẠN NHIỀU!

CS
15 tháng 12 2016 lúc 4:57

Bài 1

a) \(\frac{1}{1.2}\) + \(\frac{1}{2.3}\) + \(\frac{1}{3.4}\) + ... + \(\frac{1}{99.100}\)

= 1 - \(\frac{1}{2}\) + \(\frac{1}{2}\) - \(\frac{1}{3}\) + \(\frac{1}{3}\) - \(\frac{1}{4}\) + ... + \(\frac{1}{99}\) - \(\frac{1}{100}\)

= 1 - \(\frac{1}{100}\)

= \(\frac{99}{100}\)

Còn những bài kia em không biết làm vì em mới học lớp 6.

Chúc anh/chị học tốt!

Bình luận (0)
LF
14 tháng 12 2016 lúc 21:56

Bài 1

a)\(\frac{1}{1.2}+\frac{1}{2.3}+...+\frac{1}{99.100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

Bài 3:

b)\(\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}=0\)

Ta thấy: \(\begin{cases}\left|2x-27\right|^{2011}\ge0\\\left(3y+10\right)^{2012}\ge0\end{cases}\)

\(\Rightarrow\left|2x-27\right|^{2011}+\left(3y+10\right)^{2012}\ge0\)

\(\Rightarrow\begin{cases}\left|2x-27\right|^{2011}=0\\\left(3y+10\right)^{2012}=0\end{cases}\)\(\Rightarrow\begin{cases}2x-27=0\\3y+10=0\end{cases}\)\(\Rightarrow\begin{cases}2x=27\\3y=-10\end{cases}\)\(\Rightarrow\begin{cases}x=\frac{27}{2}\\y=-\frac{10}{3}\end{cases}\)

Bình luận (0)
PD
14 tháng 12 2016 lúc 21:58

a)\(\frac{1}{1\cdot2}+\frac{1}{2\cdot3}+\frac{1}{3\cdot4}+...+\frac{1}{99\cdot100}\)

\(=1-\frac{1}{2}+\frac{1}{2}-\frac{1}{3}+\frac{1}{3}-\frac{1}{4}+...+\frac{1}{99}-\frac{1}{100}\)

\(=1-\frac{1}{100}=\frac{99}{100}\)

3)a)\(A=\left(-7\right)+\left(-7\right)^2+\left(-7\right)^3+\left(-7^4\right)+...+\left(-7\right)^{2005}+\left(-7\right)^{2006}\)(hinh như tới \(\left(-7\right)^{2006}\) thôi nhé)

\(A=\left[\left(-7\right)+\left(-7\right)^2\right]+\left[\left(-7\right)^3+\left(-7\right)^4\right]+...+\left[\left(-7\right)^{2005}+\left(-7\right)^{2006}\right]\)

\(A=43+\left(-7\right)^2\left[\left(-7\right)+\left(-7\right)^2\right]+...+\left(-7\right)^{2004}\left[\left(-7\right)+\left(-7\right)^2\right]\)

\(A=43+\left(-7\right)^2\cdot43+...+\left(-7\right)^{2004}\cdot43\)

\(A=43\left[1+\left(-7\right)^2+...+\left(-7\right)^{2004}\right]⋮43\left(đpcm\right)\)

 

Bình luận (0)

Các câu hỏi tương tự
NC
Xem chi tiết
HA
Xem chi tiết
NT
Xem chi tiết
CD
Xem chi tiết
LL
Xem chi tiết
NT
Xem chi tiết
AJ
Xem chi tiết
NT
Xem chi tiết
CD
Xem chi tiết