Lời giải:
Đặt \(\underbrace{11....1}_{n}=a\Rightarrow 9a+1=10^n\)
\(C=4(\underbrace{11...1}_{n}.10^n+\underbrace{11...1}_{n})+2(\underbrace{111....1}_{n}.10+1)+8.\underbrace{111....1}_{n}+7\)
\(=4(a.10^n+a)+2(a.10+1)+8a+7\)
\(=4a(9a+1)+4a+20a+8a+9=36a^2+36a+9=(6a+3)^2\)
Vậy $C$ là scp