Tìm hai số u và v, biết:
a) u + v = 13 và uv = 40;
b) u – v = 4 và uv = 77.
Tìm hai số u và v, biết:
a) u + v = 13 và uv = 40;
b) u – v = 4 và uv = 77.
Các kĩ sư đảm bảo an toàn của đường cao tốc thường sử dụng công thức d = 0,05v2 + 1,1v để ước tính khoảng cách an toàn tối thiểu d (feet) (tức là độ dài quãng đường mà xe đi được kể từ khi đạp phanh đến khi xe dừng lại) đối với một phương tiện di chuyển với tốc độ v (dặm/giờ) (theo Algebra 2, NXB McGraw-Hill, 2008). Giả sử giới hạn tốc độ trên một đường cao tốc nào đó là 70 dặm/giờ. Nếu một ô tô có thể dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó có chạy nhanh hơn giới hạn tốc độ của đường cao tốc này không?
Với \(d = 300feet\) ta có: \(0,05{v^2} + 1,1v = 300\)
\(0,05{v^2} + 1,1,v - 300 = 0\)
Ta có: \(\Delta = 1,{1^2} - 4.0,05.\left( { - 300} \right) = 61,21\) nên phương trình có hai nghiệm phân biệt
\(\begin{array}{l}{v_1} = \frac{{ - 1,1 + \sqrt {61,21} }}{{2.0,05}} = - 11 + \sqrt {6121} \left( {tm\;do\;v > 0} \right);\\{v_2} = \frac{{ - 1,1 - \sqrt {61,21} }}{{2.0,05}} = - 11 - \sqrt {6121} \left( {ktm\;do\;v > 0} \right)\end{array}\)
Vì \( - 11 + \sqrt {6121} < 70\) nên ô tô dừng lại sau 300 feet kể từ khi đạp phanh thì ô tô đó không chạy nhanh hơn giới hạn tốc độ của đường cao tốc này.
Chú ý khi giải: Tốc độ trong chuyển động luôn dương.
Trả lời bởi datcoderBác Hương gửi tiết kiệm ngân hàng 100 triệu đồng với kì hạn 12 tháng. Sau một năm, do chưa có nhu cầu sử dụng nên bác chưa rút sổ tiết kiệm này ra mà gửi tiếp và gửi thêm một sổ tiết kiệm mới với số tiền 50 triệu đồng, cũng với kì hạn 12 tháng. Sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vốn lẫn lãi là 176 triệu đồng. Tính lãi suất năm của hình thức gửi tiết kiệm này (giả sử lãi suất không đổi trong suốt quá trình gửi).
Gọi x là lãi suất gửi tiết kiệm của bác Hương (x được cho dưới dạng số thập phân), điều kiện: \(x > 0\).
Số tiền lãi thu được sau kì gửi thứ nhất là: \(100 + 100x = 100\left( {1 + x} \right)\) (triệu đồng).
Số tiền cả vốn lẫn lãi bác Hương thu được sau kì gửi thứ hai với 100 triệu đồng là:
\(100\left( {1 + x} \right) + \left[ {100\left( {1 + x} \right)} \right]x = 100\left( {1 + x} \right)\left( {1 + x} \right) = 100{\left( {x + 1} \right)^2}\) (triệu đồng).
Với 50 triệu đồng bác gửi thêm, thì sau 1 năm bác thu được số tiền cả vốn lẫn lãi là: \(50 + 50x = 50\left( {1 + x} \right)\) (triệu đồng).
Vì sau hai năm (kể từ khi gửi lần đầu), bác Hương nhận được số tiền cả vỗn lẫn lãi là 176 triệu đồng nên ta có phương trình: \(100{\left( {x + 1} \right)^2} + 50\left( {1 + x} \right) = 176\)
\(100{x^2} + 250x - 26 = 0\)
\(50{x^2} + 125x - 13 = 0\)
Vì \(\Delta = {125^2} - 4.50.\left( { - 13} \right) = 18\;225 > 0 \Rightarrow \sqrt \Delta = 135\) nên phương trình có hai nghiệm phân biệt \({x_1} = \frac{{ - 125 + 135}}{{2.50}} = 0,1\left( {tm} \right);{x_1} = \frac{{ - 125 - 135}}{{2.50}} = - 2,6\left( {ktm} \right)\)
Vậy lãi suất năm của hình thức gửi tiết kiệm này là 10%.
Trả lời bởi datcoderHai khối học sinh lớp 8 và lớp 9 của một trường trung học cơ sở tham gia lao động. Nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút. Nếu mỗi khối lớp làm riêng thì khối lớp 9 làm xong nhanh hơn khối lớp 8 là 1 giờ. Hỏi nếu mỗi khối lớp làm riêng thì sau bao lâu sẽ hoàn thành công việc?
Gọi thời gian học sinh khối lớp 9 làm riêng hoàn thành công việc là x (giờ), điều kiện: \(x > 0\).
Thời gian học sinh khối lớp 8 làm riêng hoàn thành công việc là \(x + 1\) (giờ).
Trong 1 giờ, học sinh khối lớp 9 làm được: \(\frac{1}{x}\) (công việc).
Trong 1 giờ, học sinh khối lớp 8 làm được: \(\frac{1}{{x + 1}}\) (công việc).
Trong 1 giờ, cả hai khối lớp làm được: \(\frac{1}{x} + \frac{1}{{x + 1}} = \frac{{x + x + 1}}{{x\left( {x + 1} \right)}} = \frac{{2x + 1}}{{x\left( {x + 1} \right)}}\) (công việc)
Vì nếu làm chung thì sẽ hoàn thành công việc sau 1 giờ 12 phút\( = \frac{6}{5}\) giờ nên ta có phương trình:
\(\frac{{2x + 1}}{{x\left( {x + 1} \right)}} = \frac{5}{6}\)
Nhân cả hai vế của phương trình với \(6x\left( {x + 1} \right)\) để khử mẫu ta được phương trình:
\(6\left( {2x + 1} \right) = 5x\left( {x + 1} \right)\)
\(5{x^2} - 7x - 6 = 0\)
Vì \(\Delta = {\left( { - 7} \right)^2} - 4.5.\left( { - 6} \right) = 169 > 0\) nên phương trình có hai nghiệm phân biệt
\({x_1} = \frac{{7 + \sqrt {169} }}{{10}} = 2\left( {tm} \right);{x_2} = \frac{{7 - \sqrt {169} }}{{10}} = \frac{{ - 3}}{5}\left( {ktm} \right)\)
Vậy nếu làm riêng, học sinh khối 9 làm 2 giờ xong công việc và học sinh khối 8 làm 3 giờ xong công việc.
Trả lời bởi datcoder
a) Hai số u và v là nghiệm của phương trình \({x^2} - 13x + 40 = 0\)
Ta có: \(\Delta = {\left( { - 13} \right)^2} - 4.40 = 9 > 0\), \(\sqrt{\Delta} = \sqrt{9} = 3\).
Suy ra phương trình có hai nghiệm: \({x_1} = \frac{{13 + 3}}{2} = 8;{x_2} = \frac{{13 - 3}}{2} = 5\).
Vậy \(u = 8;v = 5\) hoặc \(u = 5;v = 8\).
b) Ta có: \(u\left( { - v} \right) = - 77,u + \left( { - v} \right) = 4\)
Hai số u và \( - v\) là nghiệm của phương trình \({x^2} - 4x - 77 = 0\)
Vì \(\Delta ' = {\left( { - 2} \right)^2} - 1.\left( { - 77} \right) = 81 > 0\), \(\sqrt{\Delta '} = \sqrt{81} = 9\).
Suy ra phương trình có hai nghiệm: \({x_1} = 2 + 9 = 11;{x_2} = 2 - 9 = - 7\).
Vậy \(u = 11;v = 7\) hoặc \(u = - 7;v = - 11\).
Trả lời bởi datcoder