Giải các phương trình sau:
a) \(\cot x = 1;\) b) \(\sqrt 3 \cot x + 1 = 0\)
Giải các phương trình sau:
a) \(\cot x = 1;\) b) \(\sqrt 3 \cot x + 1 = 0\)
Sử dụng máy tính cầm tay, tìm số đo độ và radian của góc \(\alpha \), biết:
a) \(\cos \alpha = - 0,75\)
b) \(\tan \alpha = 2,46\)
c) \(\cot \alpha = - 6,18\)
a) \(\cos \alpha = - 0,75\)
\( \Leftrightarrow \alpha ={138^ \circ }35'36''\) hay \(\alpha =2,4188584\) rad
b) \(\tan \alpha = 2,46\)
\( \Leftrightarrow \alpha ={67^ \circ }52'01''\) hay \(\alpha =1,1846956\) rad
c) \(\cot \alpha = -6,18\)
\( \Leftrightarrow \alpha ={ -9^ \circ }11'30''\) hay \(\alpha = -0,1604\) rad
Trả lời bởi Hà Quang MinhGiải các phương trình sau:
a) \(\sin x = \frac{{\sqrt 3 }}{2}\);
b) \(2\cos x = - \sqrt 2 \);
c) \(\sqrt 3 \tan \left( {\frac{x}{2} + {{15}^0}} \right) = 1\);
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\)
a) \(\sin x = \frac{{\sqrt 3 }}{2}\;\; \Leftrightarrow \sin x = \sin \frac{\pi }{3}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \pi - \frac{\pi }{3} + k2\pi }\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{3} + k2\pi }\\{x = \frac{{2\pi }}{3} + k2\pi \;}\end{array}\;} \right.\left( {k \in \mathbb{Z}} \right)\)
b) \(2\cos x = - \sqrt 2 \;\; \Leftrightarrow \cos x = - \frac{{\sqrt 2 }}{2}\;\;\; \Leftrightarrow \cos x = \cos \frac{{3\pi }}{4}\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = \frac{{3\pi }}{4} + k2\pi }\\{x = - \frac{{3\pi }}{4} + k2\pi }\end{array}\;\;\left( {k \in \mathbb{Z}} \right)} \right.\)
c) \(\sqrt 3 \;\left( {\tan \frac{x}{2} + {{15}^0}} \right) = 1\;\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \frac{1}{{\sqrt 3 }}\;\; \Leftrightarrow \tan \left( {\frac{x}{2} + \frac{\pi }{{12}}} \right) = \tan \frac{\pi }{6}\)
\( \Leftrightarrow \frac{x}{2} + \frac{\pi }{{12}} = \frac{\pi }{6} + k\pi \;\;\;\; \Leftrightarrow \frac{x}{2} = \frac{\pi }{{12}} + k\pi \;\;\; \Leftrightarrow x = \frac{\pi }{6} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
d) \(\cot \left( {2x - 1} \right) = \cot \frac{\pi }{5}\;\;\;\; \Leftrightarrow 2x - 1 = \frac{\pi }{5} + k\pi \;\;\;\; \Leftrightarrow 2x = \frac{\pi }{5} + 1 + k\pi \;\; \Leftrightarrow x = \frac{\pi }{{10}} + \frac{1}{2} + \frac{{k\pi }}{2}\;\;\left( {k \in \mathbb{Z}} \right)\)
Trả lời bởi Hà Quang MinhGiải các phương trình sau:
a) \(\sin 2x + \cos 4x = 0\); b) \(\cos 3x = - \cos 7x\)
a) \(\sin 2x + 1 - 2{\sin ^2}2x = 0\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\sin 2x = 1}\\{\sin 2x = - \frac{1}{2}}\end{array}\;\;\;} \right. \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{\sin 2x = \sin \frac{\pi }{2}}\\{\sin 2x = \sin - \frac{\pi }{6}}\end{array}} \right.\;\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{2x = \frac{\pi }{2} + k2\pi }\\{2x = - \frac{\pi }{6} + k2\pi }\\{2x = \pi + \frac{\pi }{6} + k2\pi }\end{array}} \right.\;\;\)
\( \Leftrightarrow \;\left[ {\begin{array}{*{20}{c}}{x = \frac{\pi }{4} + k2\pi }\\{x = - \frac{\pi }{{12}} + k\pi }\\{x = \frac{{7\pi }}{{12}} + k\pi }\end{array}} \right.\;\;\left( {k \in \mathbb{Z}} \right)\)
b) \(\cos 3x = - \cos 7x\; \Leftrightarrow \cos 3x + \cos 7x = 0\;\; \Leftrightarrow 2\cos 5x\cos 2x = 0\;\; \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{\cos 5x = 0}\\{\cos 2x = 0\;}\end{array}} \right.\;\;\)
\( \Leftrightarrow \left[ \begin{array}{l}\cos 5x = \cos \frac{\pi }{2}\\\cos 2x = \cos \frac{\pi }{2}\end{array} \right. \Leftrightarrow \left[ \begin{array}{l}5x = \frac{\pi }{2} + k2\pi \\5x = - \frac{\pi }{2} + k2\pi \\2x = \frac{\pi }{2} + k2\pi \\2x = - \frac{\pi }{2} + k2\pi \end{array} \right. \Leftrightarrow \left[ \begin{array}{l}x = \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = - \frac{\pi }{{10}} + \frac{{k2\pi }}{5}\\x = \frac{\pi }{4} + k\pi \\x = - \frac{\pi }{4} + k\pi \end{array} \right.;k \in Z\)
Trả lời bởi Hà Quang MinhMột quả đạn pháo được bắn ra khỏi nòng pháo với vận tốc ban đầu \({v_0} = 500m/s\) hợp với phương ngang một góc \(\alpha \). Trong Vật lí, ta biết rằng, nếu bỏ qua sức cản của không khí và coi quả đạn pháo được bắn ra từ mặt đất thì quỹ đạo của quả đạn tuân theo phương trình \(y = - \frac{g}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \), ở đó \(g = 9,8m/{s^2}\) là gia tốc trọng trường.
a) Tính theo góc bắn \(\alpha \) tầm xa mà quả đạn đạt tới (tức là khoảng cách từ vị trí bắn đến điểm quả đạn chạm đất).
b) Tìm góc bắn \(\alpha \) để quả đạn trúng mục tiêu cách vị trí đạt khẩu pháo 22 000m.
a) Thay g = 9,8 và \({v_0} = 500\)vào phương trình \(y = - \frac{g}{{2v_0^2{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \) ta được
\(\begin{array}{l}y = - \frac{{9,8}}{{{{2.500}^2}.{{\cos }^2}\alpha }}{x^2} + x\tan \alpha \\ = - \frac{1}{{{{\cos }^2}\alpha }}{.1,96.10^{ - 5}}.{x^2} + x\tan \alpha \\ = - \left( {1 + {{\tan }^2}\alpha } \right){1,96.10^{ - 5}}.{x^2} + x\tan \alpha \\ = x.\left[ {\tan \alpha - \left( {1 + {{\tan }^2}\alpha } \right){{.1,96.10}^{ - 5}}.x} \right]\end{array}\)
Khi đó y = 0
Suy ra x = 0 hoặc \(x = \frac{{\tan \alpha }}{{\left( {1 + {{\tan }^2}\alpha } \right){{.1,96.10}^{ - 5}}}}\)
Theo góc bắn \(\alpha \)tầm xa mà quả đạn đạt tới là \(\frac{{\tan \alpha }}{{\left( {1 + {{\tan }^2}\alpha } \right){{.1,96.10}^{ - 5}}}}\)
b) Quả đạn trúng mục tiêu cách vị trí đặt khẩu pháp 22 000 m thì x = 22 000 (m)
Khi đó
\(\begin{array}{l}22\,000 = \frac{{\tan \alpha }}{{\left( {1 + {{\tan }^2}\alpha } \right){{.1,96.10}^{ - 5}}}}\\ \Leftrightarrow 0,4312 = \frac{{\tan \alpha }}{{\left( {1 + {{\tan }^2}\alpha } \right)}}\\ \Rightarrow \alpha \approx {30^ \circ }\end{array}\)
( Bấm máy tính để tìm giá trị sấp xỉ của \(\alpha \))
Trả lời bởi Hà Quang MinhGiả sử một vật dao động điều hòa xung quanh vị trí cân bằng theo phương trình
\(x = 2\cos \left( {5t - \frac{\pi }{6}} \right)\)
Ở đây, thời gian t tính bằng giây và quãng đường x tính bằng centimet. Hãy cho biết trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng bao nhiêu lần?
Vật đi qua vị trí cân bằng thì x = 0
Khi đó
\(\begin{array}{l}2\cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow \cos \left( {5t - \frac{\pi }{6}} \right) = 0\\ \Leftrightarrow 5t - \frac{\pi }{6} = \frac{\pi }{2} + k\pi \\\Leftrightarrow t = \frac{2\pi }{15} + \frac{{k\pi }}{5} ;k \in Z\end{array}\)
Do khoảng thời gian từ 0 đến 6 giây nên \(t \in \left[ {0;6} \right]\)
\(\begin{array}{l}0 \le \ \frac{{2\pi }}{{15}} + \frac{{k\pi }}{5} \le \ 6;k \in Z\\ \Rightarrow \frac{-2 }{3}\le \ k \le \ \frac{90 - 2\pi}{3\pi};k \in Z\end{array}\)
Do \(k \in Z\) nên \(k \in \left\{ {0;1;2;3;4;5;6;7;8} \right\}\)
Vậy trong khoảng thời gian từ 0 đến 6 giây, vật đi qua vị trí cân bằng 9 lần.
Trả lời bởi Hà Quang Minh
a) \(\cot x = 1\; \Leftrightarrow \cot x = \cot \frac{\pi }{4}\;\;\; \Leftrightarrow x = \frac{\pi }{4} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
b) \(\sqrt 3 \cot x + 1 = 0\;\;\; \Leftrightarrow \sqrt 3 \cot x = - 1\; \Leftrightarrow \cot x = - \frac{{\sqrt 3 }}{3}\;\; \Leftrightarrow \cot x = \cot \left( { - \frac{\pi }{3}} \right)\)
\( \Leftrightarrow x = - \frac{\pi }{3} + k\pi \;\left( {k \in \mathbb{Z}} \right)\)
Trả lời bởi Hà Quang Minh