Bài 3. Hình thang cân

H24
Hướng dẫn giải Thảo luận (1)

*) Hình thang cân có tính chất ? hai cạnh bên bằng nhau; hai đường chéo bằng nhau.

*) Dấu hiệu nhận biết hình thang cân: hình thang có hai đường chéo bằng nhau là hình thang cân.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Hai cạnh AB và CD của tứ giác ABCD có song song với nhau.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Vì tứ giác ABCD là hình thang cân nên \(\widehat{ADC}=\widehat{BCD}\).

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a, Do ABCD là hình thang cân nên.

\(\widehat {ADC} = \widehat {BCD}\)hay \(\widehat {EDC} = \widehat {ECD}\)

Do ABCD là hình thang cân nên

\(\widehat {BAD} = \widehat {ABC}\left( 1 \right)\)

Mà:

\(\begin{array}{l}\widehat {BAD} + \widehat {EAB} = {180^0}\\\widehat {ABC} + \widehat {EBA} = {180^0}\end{array}\)

Suy ra:

\(\begin{array}{l}\widehat {BAD} + \widehat {EAB} = \widehat {ABC} + \widehat {EBC}\\ \Rightarrow \widehat {EAB} = \widehat {EBA}\end{array}\)(do(1))

b, Do \(\widehat {EAB} = \widehat {EBA}\) suy ra \(\Delta EAB\)cân tại E nên EA = EB

Do \(\widehat {EDC} = \widehat {ECD}\) suy ra \(\Delta ECD\)cân tại E nên ED = EC

Mà: ED = EC

Suy ra EA + AD = EB + BC

Suy ra AD = BC (do EA = EB)

c, Xét \(\Delta ADC\) và \(\Delta BCD\) có:

AD = BC

\(\widehat {ADC} = \widehat {BCD}\)

DC chung

Suy ra: \(\Delta ADC = \Delta BCD(c.g.c) \Rightarrow AC = BD\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Do tứ giác ABCD là hình thang cân nên

AD = BC.

AC = BD.

Xét \(\Delta ADB\) và \(\Delta BCA\) có:

AB chung, AD = BC, AC = BD

\(\Rightarrow \Delta ADB=\Delta BCA\) (c.c.c)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Do ABCD là hình thang nên AB//CD.

Kẻ BE//AC, \(E \in CD\) nên CE//AB.

\( \Rightarrow \widehat {BCE} = \widehat {ABC}\); \(\widehat {CBE} = \widehat {ACB}\) (hai góc so le trong).

a, Xét \(\Delta ABC\)và \(\Delta ECB\) có:

\(\widehat {BCE} = \widehat {ABC}\)

BC chung

\(\widehat {CBE} = \widehat {ACB}\) (do BC//AC )

\( \Rightarrow \Delta ABC = \Delta ECB\)(g.c.g)

b, BE = AC = BD

\( \Rightarrow \Delta BDE\)cân tại B

\( \Rightarrow \widehat {BDE} = \widehat {BED}\)

Do \(\Delta ABC = \Delta ECB\)

\( \Rightarrow \widehat {BEC} = \widehat {BAC}\) (2 góc tương ứng) hay \(\widehat {BED} = \widehat {BAC}(1)\)

Mà: \(\widehat {BAC} = \widehat {ACD}\) (do AB//CD)  (2)

Từ (1), (2) suy ra: \(\widehat {BED} = \widehat {ACD}\)

c, Theo câu b:

 \(\begin{array}{l}\widehat {BED} = \widehat {BDE}\\\widehat {ACD} = \widehat {BED}\end{array}\) suy ra: \(\widehat {ACD} = \widehat {BDE}\) hay \(\widehat {ACD} = \widehat {BDC}\)

Xét \(\Delta ACD\)và \(\Delta BDC\)có:

CD chung

\(\widehat {ACD} = \widehat {BDC}\)

AC = BD (gt)

\( \Rightarrow \Delta ACD = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {ADC} = \widehat {BCD}\) (2 góc tương ứng)

d,  Hình thang ABCD (AB//CD) có \(\widehat {ADC} = \widehat {BCD}\)nên hình thang ABCD là hình thang cân.

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

Xét \(\Delta AHD\) và \( \Delta BKC\) có:

\(\widehat {AHD} =\widehat{BKC} = 90^0\)

AH = BK

HD = KC 

\( \Rightarrow \Delta AHD = \Delta BKC (c.g.c) \Rightarrow \widehat{ADH} = \widehat{BCK}\)

Do AB // KH hay AB // CD suy ra ABCD là hình thang.

Mà \(\widehat{ADH} = \widehat{BCK}\) (cmt)

Suy ra ABCD là hình thang cân.

Ta có: AB = HK = 80 (cm)

DC = DH + HK + KC = 20 + 80 + 20 = 120 (cm).

Chiều cao của hình thang ABCD là 120 cm (= BK).

=> Diện tích của ô cửa sổ sau khi mở rộng là:

\( S = \frac{1}{2}(AB + CD).BK = \frac{1}{2}(80 + 120).120 = 12000(cm^2)\)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a, Xét \(\Delta ADC\)và \(\Delta BDC\)có:

DC là cạnh chung.

\(\widehat {ADC} = \widehat {BCD}\)(do ABCD là hình thang cân)

AD = BC

\( \Rightarrow \Delta ADC = \Delta BDC(c.g.c)\)

\( \Rightarrow \widehat {CAD} = \widehat {DBC}\)(2 góc tương ứng) hay

Do: \(\Delta ADC = \Delta BDC\)

Xét \(\Delta BAD\)và \(\Delta ACB\)có:

AB chung

AD = BC

AC = BD

\( \Rightarrow \Delta BDA = \Delta ACB\) (c.c.c)

\( \Rightarrow \widehat {BDA} = \widehat {ACB}\)(2 góc tương ứng) hay \(\widehat {TDA} = \widehat {TCB}\)

b, Xét \(\Delta TAD\)và \(\Delta TBC\)có:

\(\widehat {TAD} = \widehat {TBC}\)(theo câu a)

AD = BC (ABCD là hình thang cân)

\(\widehat {TDA} = \widehat {TCB}\)(theo câu a)

\( \Rightarrow \Delta TAD = \Delta TBC \Rightarrow TA = TB,TC = TD\)

c, Vì: TA = TB \( \Rightarrow \Delta ATB\)cân tại T suy ra TM là trung trực của AB

TC = TD \( \Rightarrow \Delta DTC\)cân tại T suy ra TN là trung trực của CD

Mà: M, T, N thẳng hàng. Nên MN là đường trung trực của cả 2 đường thẳng AB và CD

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

a, Ta có: \(\widehat {ABE} + \widehat {EBD} + \widehat {DBC} = 60^0 + 60^0 + 60^0 = {180^0}\)

Suy ra 3 điểm A, B, C thẳng hàng

b, Do:

\(\begin{array}{l}\widehat {BDE} = \widehat {DBC} = {60^0} \Rightarrow ED//BC\left( 1 \right)\\\widehat {BED} = \widehat {EBA} = {60^0} \Rightarrow ED//AB\left( 2 \right)\end{array}\)

Từ (1), (2) suy ra: ED//AC suy ra tứ giác ACDE là hình thang

Mà: \(\widehat {EAC} = \widehat {DCA} = {60^0}\) suy ra hình thang ACDE là hình thang cân

c, Gọi BH là đường cao của tam giác BDE. Áp dụng định lí Pythagore vào tam giác BHD vuông tại H, ta có:

\(B{D^2} = B{H^2} + H{D^2} \Rightarrow B{H^2} = B{D^2} - H{D^2} = {a^2} - \frac{{{a^2}}}{4} = a\sqrt {\frac{3}{4}} \)

AC = a + a = 2a

Diện tích của tứ giác ACDE là: \({S_{ABCD}} = \frac{1}{2}.BH.(ED + AC) = \frac{1}{2}.a\sqrt {\frac{3}{4}} .(2a + a) = \frac{{3{a^2}}}{2}\sqrt {\frac{3}{4}} \)

Trả lời bởi Hà Quang Minh
H24
Hướng dẫn giải Thảo luận (1)

ABCD là hình chữ nhật suy ra AD = BC

Vì: AM = BN suy ra AN = BM \(M,N \in AB\)

Mà: AB//CD suy ra MN//CD suy ra MNCD là hình thang.

Áp dụng định lí pythagore của \(\Delta AND\) vuông tại A có:

\(N{D^2} = A{N^2} + A{D^2} = B{M^2} + B{C^2}\left( 1 \right)\)

Áp dụng định lí pythagore của \(\Delta NBC \) vuông tại B có:

\(M{C^2} = B{M^2} + B{C^2}\left( 2 \right)\)

Từ (1), (2) suy ra: \(M{C^2} = M{D^2} \Rightarrow MC = ND\)

Vậy hình thang MNCD có 2 đường chéo MC = ND nên MNCD là hình thang cân.

Trả lời bởi Hà Quang Minh