Hãy suy ra gia tốc hướng tâm của một điểm ở chính giữa một nan hoa xe đạp trong ví dụ trên. Từ đó, có thể suy ra điều gì?
Hãy suy ra gia tốc hướng tâm của một điểm ở chính giữa một nan hoa xe đạp trong ví dụ trên. Từ đó, có thể suy ra điều gì?
Em hãy điền vào chỗ trống ở bảng dưới đây:
+ \({15^0} = \frac{{15.\pi }}{{180}} = \frac{\pi }{{12}}radian\)
+ \(\frac{{3\pi }}{4} = \frac{3}{4}.180 = {135^0}\)
+ \({150^0} = \frac{{150.\pi }}{{180}} = \frac{{5\pi }}{6}radian\)
+ \(\frac{\pi }{{10}} = \frac{1}{{10}}.180 = {18^0}\)
Độ | 150 | 1350 | 1500 | 180 |
Rad | \(\frac{\pi }{{12}}\) | \(\frac{{3\pi }}{4}\) | \(\frac{{5\pi }}{6}\) | \(\frac{\pi }{{10}}\) |
Tìm chiều dài của một cung tròn của đường tròn có bán kính 1,2 m, được chắn bởi góc 2000.
Đổi \({200^0} = \frac{{200.\pi }}{{180}} = \frac{{10\pi }}{9}(radian)\)
=> Chiều dài của cung tròn là: \(s = \alpha .R = {200^0} = \frac{{10\pi }}{9}.1,2 \approx 4,2(m)\)
Trả lời bởi Quoc Tran Anh LeTrong hệ thống GPS (hệ thống định vị toàn cầu), mỗi vệ tinh nhân tạo quay xung quanh Trái Đất được hai vòng trong một giây, có độ cao khoảng 20 200 km so với mặt đất. Tính tốc độ và gia tốc hướng tâm của mỗi vệ tinh. Cho bán kính của Trái Đất bằng 6400 km.
Ta có \(\omega \)= 2 vòng/s = 2.2π = 12,57 rad/s; R = 20 200 + 6400 = 26 600 km = 2,66.107 m
Tốc độ của mỗi vệ tinh là:
\(v = \omega .R = 12,57.2,{66.10^7} \approx 3,{34.1010^8}(m/s)\)
Gia tốc hướng tâm của mỗi vệ tinh là:
\({a_{ht}} = {\omega ^2}.R = 12,{57^2}.2,{66.10^7} \approx 4,{2.10^9}(m/{s^2})\)
Trả lời bởi Quoc Tran Anh Le
+ Gia tốc hướng tâm của một điểm chính giữa nan hoa xe đạp: \({a_{ht}} = {\omega ^2}.R\)
+ Ta có \(\omega \) luôn không đổi trong quá trình chuyển động, nên những điểm càng xa tâm thì gia tốc càng lớn và ngược lại.
=> Gia tốc hướng tâm phụ thuộc vào khoảng cách từ điểm tới tâm.
Trả lời bởi Quoc Tran Anh Le