So sánh:
a) -1,(81) và -1,812;
b) \(2\frac{1}{7}\) và 2,142;
c) - 48,075…. và – 48,275….;
d) \(\sqrt 5 \) và \(\sqrt 8 \)
So sánh:
a) -1,(81) và -1,812;
b) \(2\frac{1}{7}\) và 2,142;
c) - 48,075…. và – 48,275….;
d) \(\sqrt 5 \) và \(\sqrt 8 \)
Tìm chữ số thích hợp cho
a) So sánh hai số thập phân sau: -0,617 và -0,614.
b) Nêu quy tắc so sánh 2 số thập phân hữu hạn.
a) Vì 0,617 > 0,614 nên -0,617 < -0,614
b) * So sánh 2 số thập phân khác dấu: Số thập phân âm luôn nhỏ hơn số thập phân dương
* So sánh 2 số thập phân dương:
Bước 1: So sánh phần số nguyên của 2 số thập phân đó. Số thập phân nào có phần số nguyên lớn hơn thì lớn hơn
Bước 2: Nếu 2 số thập phân dương đó có phần số nguyên bằng nhau thì ta tiếp tục so sánh từng cặp chữ số ở cùng một hàng( sau dấu ","), kể từ trái sang phải cho đến khi xuất hiện cặp chữ số đầu tiên khác nhau. Ở cặp chữ số khác nhau đó, chữ số nào lớn hơn thì số thập phân chứa chữ số đó lớn hơn
*So sánh 2 số thập phân âm:
Nếu a < b thì –a > - b
Trả lời bởi Hà Quang MinhTìm số đối của mỗi số sau:
\(\frac{{ - 8}}{{35}};\frac{5}{{ - 6}}; - \frac{{18}}{7};1,15; - 21,54; - \sqrt 7 ;\sqrt 5 \)
Số đối của \(\frac{{ - 8}}{{35}};\frac{5}{{ - 6}}; - \frac{{18}}{7};1,15; - 21,54; - \sqrt 7 ;\sqrt 5 \) lần lượt là: \(\frac{8}{{35}};\frac{5}{6};\frac{{18}}{7}; - 1,15;21,54;\sqrt 7 ; - \sqrt 5 \)
Trả lời bởi Hà Quang MinhSo sánh 2 số thực sau:
a) \(1,(375)\) và \(1\frac{3}{8}\)
b) – 1,(27) và -1,272
a) Ta có: 1,(375) = 1,375375375…
\(1\frac{3}{8}\) = 1,375
Vì 1,375375... > 1,375 nên 1,(375) > \(1\frac{3}{8}\)
b) Ta có: -1,(27) = -1,272727…
Vì 1,272727… > 1,272 nên - 1,272727 < -1,272 hay – 1,(27) < -1,272
Trả lời bởi Hà Quang MinhTìm số đối của mỗi số sau:
\(\frac{2}{{ - 9}}; - 0,5; - \sqrt 3 \)
2/9; 0,5;\(\sqrt{3}\)
Trả lời bởi Nguyễn Lê Phước Thịnha) Nêu biểu diễn thập phân của số hữu tỉ.
b) Nêu biểu diễn thập phân của số vô tỉ.
a) Các số hữu tỉ được biểu diễn bằng các số thập phân hữu hạn hoặc vô hạn tuần hoàn.
b) Các số vô tỉ được biểu diễn bằng các số thập phân vô hạn không tuần hoàn.
Trả lời bởi Mai Trung Hải Phonga) Nêu hai ví dụ về số hữu tỉ
b) Nêu 2 ví dụ về số vô tỉ
Biểu diễn các số hữu tỉ sau trên trục số: \( - \frac{1}{2};1;1,25;\frac{7}{4}\)
Trong các phát biểu sau, phát biểu nào đúng, phát biểu nào sai?
a) Nếu a \( \in \) Z thì a \( \in \) R
b) Nếu a \( \in \) Q thì a \( \in \) R
c) Nếu a \( \in \) R thì a \( \in \) Z
d) Nếu a \( \in \) R thì a \( \notin \) Q
a) Đúng vì 1 số nguyên cũng là số thực
b) Đúng vì 1 số hữu tỉ cũng là số thực
c) Sai vì 1 số thực có thể không là số nguyên. Chẳng hạn, số \(0,2 \in R\) nhưng \(0,2 \notin Z\)
d) Sai vì 1 số thực có thể là số hữu tỉ hoặc không là số hữu tỉ. Chẳng hạn \(0,2 \in R\) và \(0,2 \in Q\)
Trả lời bởi Hà Quang Minh
a) Ta có: 1,(81) = 1,8181…
Vì 1,8181… > 1,812 nên -1,8181… < -1,812 hay -1,(81) < -1,812
b) Ta có: \(2\frac{1}{7}\) = 2,142857….
Vì 2,142857….> 2,142 nên \(2\frac{1}{7}\) > 2,142
c) Vì 48,075… < 48,275… nên - 48,075…. > – 48,275…
d) Vì 5 < 8 nên \(\sqrt 5 \) < \(\sqrt 8 \)
Trả lời bởi Hà Quang Minh