Bài 1: Vectơ và các phép toán vectơ trong không gian

H24
H24
Hướng dẫn giải Thảo luận (1)

Trong không gian, cho hai vecto \(\vec a, \vec b\) khác \(\;\vec 0\). Lấy một điểm O tùy ý và vẽ hai vecto\(\;\overrightarrow {OA}  = \vec a,\overrightarrow {OB}  = \vec b\). Góc giữa hai vecto \(\vec a,\overrightarrow {b\;} \) trong không gian, ký hiệu \(\left( {\vec a,\vec b} \right)\) là góc giữa hai vecto \(\;\overrightarrow {OA} ,\overrightarrow {OB} \).

Trả lời bởi datcoder
H24
Hướng dẫn giải Thảo luận (1)

Ta có A’D’//AD.

Góc giữa \(\overrightarrow {AC} \;\)và\(\;\overrightarrow {A'D'} \)= \(\;\overrightarrow {AC} \) và \(\overrightarrow {AD} \).

a) Mà ABCD là hình vuông => \(\widehat {CAD} = 45^\circ \)

b) \(\overrightarrow {\left| {AC} \right|} .|\overrightarrow {A'D'|} \) = AC.AD = 3.3 = 9.

cos(\(\overrightarrow {AC} ,\overrightarrow {A'D'} \))= cos(\(\overrightarrow {AC} ,\overrightarrow {AD} )\)= \(\frac{{\overrightarrow {AC} .\overrightarrow {AD} }}{{\overrightarrow {\left| {AC} \right|} .\overrightarrow {\left| {AD} \right|} }} = \frac{{3.3}}{{3.3}} = 1\).

Trả lời bởi datcoder
H24
H24
H24
H24
H24
H24