Bài 1: Không gian mẫu và biến cố

QL
Hướng dẫn giải Thảo luận (1)

a) Lần đầu tiên lấy thẻ, sau đó để lại vào hộp nên lần thứ 2 cũng sẽ có 3 trường hợp với 3 số xảy ra, nên ta có không gian mẫu của phép thử là:

\(\Omega  = \left\{ {\left( {i;j} \right)\left| {i,j = 1,2,3} \right.} \right\}\) với i, j lần lượt là số được đánh trên thẻ được lấy lần đầu và lần hai

b) Lần đầu lấy một thẻ từ hộp, xem số, bỏ ra ngoài rồi lấy tiếp 1 thẻ khác từ hộp, nên lần hai chỉ có 2 trường hợp với hai số còn lại, nên ta có không gian mẫu của phép thử là:

\(\Omega  = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)

(Với kết quả của phép thử là cặp số (i; j) trong đó và lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)

c) Ta lấy đồng thời hai thẻ nên các số được đánh trên thẻ là khác nhau

\(\Omega  = \left\{ {(1;2),(1;3),(2;1),(2;3),(3;1),(3;2)} \right\}\)

(Với kết quả của phép thử là cặp số (i; j) trong đó và lần lượt là số được đánh trên thẻ được lấy ra lần thứ nhất và thứ hai)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi là biến cố “Số chấm xuất hiện trên hai con xúc xắc hơn kém nhau 3 chấm”. Tập hợp mô tả biến cố là:

\(A = \left\{ {(1;4),(2;5),(3;6)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó và lần lượt là số chấm trên hai con xúc xắc)

b) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi là biến cố “Tích số chấm xuất hiện trên hai con xúc xắc chia hết cho 5”. Tập hợp mô tả biến cố là:

\(A = \left\{ {(1;5),(2;5),(3;5),(4;5),(6;5)} \right\}\)(Với kết quả của phép thử là cặp số (i; j) trong đó và lần lượt là số chấm trên hai con xúc xắc)

c) Vì hai con xúc xắc được gieo đồng thời, nên kết quả không phân biệt thứ tự

Gọi là biến cố “Tổng số chấm xuất hiện trên hai con xúc xắc là số lẻ”. Tập hợp mô tả biến cố là:

\(C = \left\{ {(a,b)\left| {a = 2,4,6;b = 1;3;5} \right.} \right\}\)(Với kết quả của phép thử là cặp số (a,b) trong đó và lần lượt là số chấm trên hai con xúc xắc)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Kết quả của phép thử là một cặp số (a;b) trong đó a, b lần lượt là số chấm xuất hiện trên con xúc xắc thứ nhất và thứ hai, suy ra:

\(B = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

\(C = \left\{ {(2;1),(4;2),(6;3)} \right\}\)

b) Từ tập hợp mô tả biến cố ở câu a) ta có:

Có 6 kết quả thuận lợi cho biến  cố B

Có 3 kết quả thuận lợi cho biến cố C

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (2)

\(a,\Omega=\left\{1;2;3;4;5;...;98;99\right\}\\ b,A=\left\{1;4;9;16;25;36;49;64;81\right\}\\c, B=\left\{4;8;16;20;24;...;92;96\right\}\\ Số.kết.quả.thuận.lợi.cho.B:\left(96-4\right):4+1=24\left(kết.quả\right)\)

Trả lời bởi GV Nguyễn Trần Thành Đạt
QL
Hướng dẫn giải Thảo luận (1)

Tổng số chấm của hai con xúc sắc lớn nhất có thể là: 6+6=12 (chấm)

Vậy tất cả các kết quả gieo hai con xúc sắc đều là kết quả thuận lợi đối với biến cố D. Số kết quả thuận lợi: 6 x 6 = 36 (kết quả)

Và không có kết quả nào thuận lợi với biến cố E (không có TH nào tổng số chấm hai con xúc sắc gieo ra được bằng 13)

Trả lời bởi GV Nguyễn Trần Thành Đạt
QL
Hướng dẫn giải Thảo luận (1)

a) Kết quả phép thử là (2;3) tương ứng với lần gieo đầu tiên số chấm là 2 và lần giao thứ hai số chấm là 3

Suy ra số chấm hai lần khác nhau

Vậy Bình thắng

b) Cường chiến thắng thì kết quả số chấm trên hai lần gieo là giống nhau nên tập hợp các kết quả của phép thử đem lại chiến thắng cho Cường là

\(A = \left\{ {(1;1),(2;2),(3;3),(4;4),(5;5),(6;6)} \right\}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Từ câu b) của hoạt động khám phá 1, ta có không gian mẫu là

\( \begin{array}{l}\Omega  =\{\left(  {1;1} \right);\left( {1;2} \right);\left( {1;3} \right);\left( {1;4} \right);\left( {1;5} \right);\left( {1;6} \right);\left( {2;1} \right);\left( {2;2} \right);\left( {2;3} \right);\left( {2;4} \right);\left( {2;5} \right);\left( {2;6} \right);\left( {3;1} \right);\left( {3;2} \right);\\\left( {3;3} \right);\left( {3;4} \right);\left( {3;5} \right);\left( {3;6} \right);\left( {4;1} \right);\left( {4;2} \right);\left( {4;3} \right);\left( {4;4} \right);\left( {4;5} \right);\left( {4;6} \right);\\\left( {5;1} \right);\left( {5;2} \right);\left( {5;3} \right);\left( {5;4} \right);\left( {5;5} \right);\left( {5;6} \right);\left( {6;1} \right);\left( {6;2} \right);\left( {6;3} \right);\left( {6;4} \right);\left( {6;5} \right);\left( {6;6} \right)\}\end{array} \)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Trước khi An gieo con xúc xắc, ta không thể biết bạn nào sẽ chiến thắng. Vì kết quả xúc xắc là ngẫu nhiên, không thể đoán trước

b) Các kết quả có thể xảy ra trong hai lần gieo là (lần lượt số chấm theo thứ tự gieo xúc xắc): 11; 12; 13; 14; 15; 16; 21; 22; 23; 24; 25; 26; 31; 32; 33; 34; 35; 36; 41; 42; 43; 44; 45; 46; 51; 52; 53; 54; 55; 56; 61; 62; 63; 64; 65; 66

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Do lần đầu tiên lấy bóng sau đó trả lại hộp nên lần hai có thể lấy 1 trong 4 quả bóng và hai lần lấy lần lượt nên ta cần phải tính đến thứ tự lấy bóng. Nếu lần đầu lấy được bóng 1 và lần hai lấy được bóng 3 thì ta sẽ kí hiệu kết quả của phép thử là cặp (1; 3). Khi đó không gian mẫu của phép thử là:

\(\Omega  = \left\{ \begin{array}{l}(1;1);(1;2);(1;3);(1;4);(2;1);(2;2);(2;3);(2;4);\\(3;1);(3;2);(3;3);(3;4);(4;1);(4;2);(4;3);(4;4)\end{array} \right\}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

a) Công việc cần  qua hai công đoạn

Công đoạn 1 cần chọn một bạn nữ từ 4 bạn có 4 cách

Công đoạn 2 cần chọn 2 bạn nam từ 5 bạn và không tính đến thứ tự có \(C_5^2\) cách

Vậy có \(4.C_5^2 = 40\)kết quả thuận lợi cho biến cố “Trong ba bạn được chọn có đúng một bạn nữ”

b) Ba bạn được chọn không có bạn nam nào tức là ba bạn đều là nữ, ta chọn ra 3 bạn nữ từ 4 bạn và không tính đến thứ tự có \(C_4^3 = 4\) cách

Vậy có 4 kết quả thuận lợi cho biến cố “Trong ba bạn được chọn không có bạn nam nào”

Trả lời bởi Hà Quang Minh