Cho hình vuông ABCD có độ dài cạnh bằng 3cm. Tính độ dài của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).
Cho hình vuông ABCD có độ dài cạnh bằng 3cm. Tính độ dài của các vectơ \(\overrightarrow {AB} ,\overrightarrow {AC} \).
Quan sát ròng rọc hoạt động khi dùng lực để kéo một đầu của ròng rọc. Chuyển động của các đoạn dây được mô tả bằng các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)(Hình 47).
a) Hãy chỉ ra các cặp vectơ cùng phương.
b) Trong các cặp vectơ đó, cho biết chúng cùng hướng hay ngược hướng.
Gọi a, b, c là các đường thẳng lần lượt chứa các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \).
Khi đó: a, b, c lần lượt là giá của các vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \)
a) Dễ thấy: a // b // c
\( \Rightarrow \) Ba vectơ \(\overrightarrow a ,\overrightarrow b ,\overrightarrow c \) cùng phương với nhau.
Vậy các cặp vectơ cùng phương là: \(\overrightarrow a \) và \(\overrightarrow b \), \(\overrightarrow a \) và \(\overrightarrow c \), \(\overrightarrow b \) và \(\overrightarrow c \).
b) Quan sát ba vectơ, ta thấy: vectơ \(\overrightarrow a \) và \(\overrightarrow c \) cùng hướng xuống còn vectơ \(\overrightarrow b \) hướng lên trên.
Vậy vectơ \(\overrightarrow a \) và \(\overrightarrow c \) cùng hướng, vectơ \(\overrightarrow a \) và \(\overrightarrow b \) ngược hướng, vectơ \(\overrightarrow b \) và \(\overrightarrow c \) ngược hướng.
Trả lời bởi Hà Quang Minh
Ta có: \(|\overrightarrow {AB} | = AB\) và \(|\overrightarrow {AC} |\; = AC.\)
Mà \(AB = 3,\;AC = \sqrt {A{B^2} + B{C^2}} = \sqrt {{3^2} + {3^2}} = 3\sqrt 2 \)
\( \Rightarrow \;|\overrightarrow {AB} |\, = 3;\;\;|\overrightarrow {AC} |\, = 3\sqrt 2 \)
Trả lời bởi Hà Quang Minh