$1. Giá trị lượng giác của một góc từ 0 độ đến 180 độ. Định lí côsin và định lí sin trong tam giác

QL
Hướng dẫn giải Thảo luận (1)

Xét tam giác ABC, ta có:

\(\widehat A + \widehat B + \widehat C = {180^o} \Rightarrow \frac{{\widehat A}}{2} + \frac{{\widehat B + \widehat C}}{2} = {90^o}\)

Do đó \(\frac{{\widehat A}}{2}\) và \(\frac{{\widehat B + \widehat C}}{2}\) là hai góc phụ nhau.

a) Ta có: \(\sin \frac{A}{2} = \cos \left( {{{90}^o} - \frac{A}{2}} \right) = \cos \frac{{B + C}}{2}\)

b) Ta có: \(\tan \frac{{B + C}}{2} = \cot \left( {{{90}^o} - \frac{{B + C}}{2}} \right) = \cot \frac{A}{2}\)

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Xét tam giác ABC, ta có: \(\widehat {BAC} = 59,{95^o};\;\widehat {BCA} = 82,{15^o}.\)

\( \Rightarrow \widehat {ABC} = {180^o} - \left( {59,95 + 82,{{15}^o}} \right) = 37,{9^o}\)

Áp dụng định lí sin trong tam giác BAC ta có: \(\frac{{AB}}{{\sin C}} = \frac{{AC}}{{\sin B}}\)

\( \Rightarrow AB = \sin C.\frac{{AC}}{{\sin B}} = \sin 82,{15^o}.\frac{{25}}{{\sin {37,9^o}}} \approx 40\)

Vậy khoảng cách từ vị trí A đến vị trí B là 40 m.

Trả lời bởi Hà Quang Minh
QL
Hướng dẫn giải Thảo luận (1)

Tham khảo:

Gọi B, C lần lượt là vị trí của tàu thứ nhất và tàu thứ hai sau 2,5 giờ.

Sau 2,5 giờ:

Quãng đường tàu thứ nhất đi được là: AB = 8.2,5 = 20 (hải lí)

Quãng đường tàu thứ hai đi được là: AC = 12.2,5 = 30 (hải lí)

Áp dụng định lí cosin trong tam giác ABC ta có:

\(B{C^2} = A{C^2} + A{B^2} - 2.AC.AB.\cos A\)

\(\begin{array}{l} \Rightarrow B{C^2} = {30^2} + {20^2} - 2.30.20.\cos {75^o}\\ \Rightarrow B{C^2} \approx 989,4\\ \Rightarrow BC \approx 31,5\end{array}\)

Vậy hai tàu cách nhau 31,5 hải lí.

Trả lời bởi Kiều Sơn Tùng
QL
Hướng dẫn giải Thảo luận (1)

Gọi các điểm:

O là vị trí của chiếc diều.

H là hình chiếu vuông góc của chiếc diều trên mặt đất.

C, D lần lượt là hình chiếu vuông góc của A, B trên OH.

 

Đặt OC = x, suy ra OH = x + 20 + 1,5 =x + 21,5.

Xét tam giác OAC, ta có: \(\tan \alpha  = \frac{{OC}}{{AC}} \Rightarrow AC = \frac{{OC}}{{\tan \alpha }} = \frac{x}{{\tan {{35}^o}}}\)

Xét tam giác OBD, ta có: \(\tan \beta  = \frac{{OD}}{{BD}} \Rightarrow BD = \frac{{OD}}{{\tan \beta }} = \frac{{x + 20}}{{\tan {{75}^o}}}\)

Mà:\(AC = BD\)\( \Rightarrow \frac{x}{{\tan {{35}^o}}} = \frac{{x + 20}}{{\tan {{75}^o}}}\)

\(\begin{array}{l} \Leftrightarrow x.\tan {75^o} = \left( {x + 20} \right).\tan {35^o}\\ \Leftrightarrow x = \frac{{20.\tan {{35}^o}}}{{\tan {{75}^o} - \tan {{35}^o}}} \approx 4,6\end{array}\)

Suy ra OH = 26,1.

Vậy chiếc diều bay cao 26,1 m so với mặt đất.

Trả lời bởi Hà Quang Minh