a) ĐKXĐ: \(x\ge0;x\ne1\)
b) A= \(\dfrac{15\sqrt{x}-11}{x+2\sqrt{x}-3}\) + \(\dfrac{3\sqrt{x}-2}{1-\sqrt{x}}\)- \(\dfrac{2\sqrt{x}+3}{\sqrt{x}+3}\)
A= \(\dfrac{15\sqrt{x}-11}{\left(\sqrt{x}-1\right)}\) - \(\dfrac{\left(3\sqrt{x}-2\right)\left(\sqrt{x}+3\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)- \(\dfrac{\left(2\sqrt{x}+3\right)\left(\sqrt{x}-1\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{15\sqrt{x}-11-3x-9\sqrt{x}+2\sqrt{x}+6-2x+2\sqrt{x}-3\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{15\sqrt{x}-11-3x-7\sqrt{x}+6-2x-\sqrt{x}+3}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{-5x+7\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{-5x+5\sqrt{x}+2\sqrt{x}-2}{\left(\sqrt{x}-1\right)\left(\sqrt{x}+3\right)}\)
= \(\dfrac{\left(\sqrt{x}-1\right)\left(-5\sqrt{x}+2\right)}{\left(\sqrt{x}-1\right)\left(\sqrt{x+3}\right)}\)
= \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
c) GTLN (Max)
A= \(\dfrac{-5\sqrt{x}+2}{\sqrt{x}+3}\)
= -5+\(\dfrac{17}{\sqrt{x}+3}\)
Ta có: \(\sqrt{x}\)\(\ge\)0 (ĐKXĐ) \(\Rightarrow\) \(\sqrt{x}+3\ge3\)
\(\Rightarrow\) \(\dfrac{1}{\sqrt{x}+3}\le\dfrac{1}{3}\)
\(\Rightarrow\) \(\dfrac{17}{\sqrt{x}+3}\le\dfrac{17}{3}\)
\(\Rightarrow\) \(-5+\dfrac{17}{\sqrt{x}+3}\le-5+\dfrac{17}{3}\)
\(\Leftrightarrow\) A\(\le\dfrac{2}{3}\)
Dấu "=" xảy ra khi \(\sqrt{x}=0\) \(\Rightarrow\) \(x=0\)
Vậy Max A =\(\dfrac{2}{3}\) khi \(x=0\)