\(\sqrt{a^2.b}\left(a>=0,b>=0\right)\) rút gọn
a,Rút gọn: B = \(\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\) vs a≥0, a≠1.
b,GPT: \(2x^2-5x+2\)= 0
a) Ta có: \(B=\left(1+\dfrac{a+\sqrt{a}}{\sqrt{a}+1}\right)\left(1-\dfrac{a-\sqrt{a}}{\sqrt{a}-1}\right)\)
\(=\left(1+\sqrt{a}\right)\left(1-\sqrt{a}\right)\)
=1-a
b) Ta có: \(2x^2-5x+2=0\)
\(\Leftrightarrow\left(2x-1\right)\left(x-2\right)=0\)
\(\Leftrightarrow\left[{}\begin{matrix}x=\dfrac{1}{2}\\x=2\end{matrix}\right.\)
Vậy: \(S=\left\{\dfrac{1}{2};2\right\}\)
cho biểu thức p=\(\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)với a lớn hơn bằng 0,b lớn hơn bằng 0,a khác b
a rút gọn p
b cm p lớn hơn bằng 0
a)
\(P=\left(\dfrac{b-a}{\sqrt{b}-\sqrt{a}}-\dfrac{a\sqrt{a}-b\sqrt{b}}{a-b}\right):\dfrac{\left(\sqrt{b}-\sqrt{a}\right)^2+\sqrt{ab}}{\sqrt{a}+\sqrt{b}}\)
\(=\left[\sqrt{b}+\sqrt{a}-\dfrac{\left(\sqrt{a}-\sqrt{b}\right)\left(a+\sqrt{ab}+b\right)}{\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)}\right]:\dfrac{b-\sqrt{ab}+a}{\sqrt{a}+\sqrt{b}}\)
\(=\left(\sqrt{b}+\sqrt{a}-\dfrac{a+\sqrt{ab}+b}{\sqrt{a}+\sqrt{b}}\right).\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)
\(=\dfrac{\left(\sqrt{a}+\sqrt{b}\right)^2-a-\sqrt{ab}-b}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)
\(=\dfrac{\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{\sqrt{a}+\sqrt{b}}{a-\sqrt{ab}+b}\)\(=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}\)
b) \(P=\dfrac{\sqrt{ab}}{a-\sqrt{ab}+b}=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\)
Vì \(\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b>0;\forall a\ge0;b\ge0;a\ne b\)
\(\sqrt{ab}\ge0\)\(\forall a\ge0;b\ge0\)
\(\Rightarrow P=\dfrac{\sqrt{ab}}{\left(\sqrt{a}-\dfrac{1}{2}\sqrt{b}\right)^2+\dfrac{3}{4}b}\ge0\)
Vậy...
Rút gọn bthuc ( ko dùng mt cầm tay)
\(\dfrac{a+b-2\sqrt{ab}}{\left(\sqrt{a}-\sqrt{b}\right)}\):\(\dfrac{1}{\sqrt{a}+\sqrt{b}}\) ( a>0, b>0, a khác b).
\(A=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2}{\left(\sqrt{a}-\sqrt{b}\right)}\cdot\left(\sqrt{a}+\sqrt{b}\right)\)
\(=\left(\sqrt{a}-\sqrt{b}\right)\left(\sqrt{a}+\sqrt{b}\right)\)
=a-b
Với `a > 0,b > 0,a \ne b` có:
`[a+b-2\sqrt{ab}]/[\sqrt{a}-\sqrt{b}]:1/[\sqrt{a}+\sqrt{b}]`
`=[(\sqrt{a}-\sqrt{b})^2]/[\sqrt{a}-\sqrt{b}]. (\sqrt{a}+\sqrt{b})`
`=(\sqrt{a}-\sqrt{b})(\sqrt{a}+\sqrt{b})`
`=a-b`
\(=\dfrac{\left(\sqrt{a}-\sqrt{b}^2\right)}{\left(\sqrt{a-\sqrt{b}}\right)}:\left(\sqrt{a+\sqrt{b}}\right)\)
\(=\left(\sqrt{a-\sqrt{b}}\right).\left(\sqrt{a+\sqrt{b}}\right)\)
ĐA:\(a-b\)
rút gọn các biểu thức sau:
a) \(\sqrt{\left(2-\sqrt{3}\right)^2}\)
b) \(\sqrt{\left(3-\sqrt{11}\right)^2}\)
c) \(2\sqrt{a^2}\)với a ≥ 0
d) 3\(\sqrt{\left(a-2\right)^2}\)với a < 0
\(a,=\left|2-\sqrt{3}\right|=2-\sqrt{3}\\ b,=\left|3-\sqrt{11}\right|=\sqrt{11}-3\\ c,=2\left|a\right|=2a\\ d,=3\left|a-2\right|=3\left(2-a\right)\left(a< 0\Leftrightarrow a-2< 0\right)\)
\(P=\dfrac{\left(\sqrt{a}-\sqrt{b}\right)^2+4\sqrt{ab}}{\sqrt{a}+\sqrt{b}}.\dfrac{a\sqrt{b}-b\sqrt{a}}{\sqrt{ab}}\) với a > 0, b > 0.
a) Rút gọn P
b) Tính giá trị của P khi \(a=2\sqrt{3},b=\sqrt{3}\).
a: \(P=\left(\sqrt{a}+\sqrt{b}\right)\left(\sqrt{a}-\sqrt{b}\right)=a-b\)
Rút gọn các biểu thức sau:
a)\(\sqrt{8}-2\sqrt{50}+\sqrt{18}\) b)\(\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\) (với a>0;a\(\ne1\))
\(a.\sqrt{8}-2\sqrt{50}+\sqrt{18}=2\sqrt{2}-10\sqrt{2}+3\sqrt{2}=\sqrt{2}\left(2-10+3\right)=-5\sqrt{2}\)
\(b.\left(\dfrac{\sqrt{a}-a}{1-\sqrt{a}}+\sqrt{a}\right):\dfrac{2\sqrt{a}}{1+\sqrt{a}}\left(đk:a\ge0;a\ne1\right)\)
\(=\left(\sqrt{a}+\sqrt{a}\right).\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=2\sqrt{a}.\dfrac{1+\sqrt{a}}{2\sqrt{a}}\)
\(=1+\sqrt{a}\)
(Chỗ điều kiện bài b mik thấy a = 0 cũng có thể là nghiệm nên mik sửa lại nhé)
b. \(=\left(\dfrac{\sqrt{a}-a+a\left(1-\sqrt{a}\right)}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(\dfrac{2\sqrt{a}}{1-\sqrt{a}}\right):\left(\dfrac{2\sqrt{a}}{1+\sqrt{a}}\right)\)
\(=\left(1-\sqrt{a}\right)\left(1+\sqrt{a}\right)\)
\(=1-a\)
rút gọn và tính giá trị biểu thức:
\(\frac{a-b}{\sqrt{a\left(a+2b\right)+b}}:\sqrt{\frac{\left(a-b\right)^2}{a\left(a+b\right)}}với\)
\(a>0;b>0;\frac{a}{b}=\frac{9}{7}\)
a) \(Q=\frac{\left(\sqrt{x}-\sqrt{y}\right)^2+2x\sqrt{x}+y\sqrt{y}}{x\sqrt{x}+y\sqrt{y}}\left(x>0,y>0\right)\)
Rút Gọn
b) \(M=\frac{x^2-\sqrt{2}}{x^4+\left(\sqrt{3}-\sqrt{2}\right)x^2-\sqrt{6}}\)
Rút Gọn
A=\(\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)với a>0,a khác 1
a)rút gọn A
b)tính giá trị của A biết a=4+2\(\sqrt{3}\)
c)tìm a để A<0
a) \(A=\left(\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{a-\sqrt{a}}\right):\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
\(A=\left[\dfrac{\sqrt{a}}{\sqrt{a}-1}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left(\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right)\)
\(A=\left[\dfrac{a}{\sqrt{a}\left(\sqrt{a}-1\right)}-\dfrac{1}{\sqrt{a}\left(\sqrt{a}-1\right)}\right]:\left[\dfrac{1}{\sqrt{a}+1}+\dfrac{2}{a-1}\right]\)
\(A=\dfrac{a-1}{\sqrt{a}\left(\sqrt{a}-1\right)}:\left[\dfrac{\sqrt{a}-1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}+\dfrac{2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\right]\)
\(A=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}\left(\sqrt{a}-1\right)}:\dfrac{\sqrt{a}-1+2}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(A=\dfrac{\sqrt{a}+1}{\sqrt{a}}:\dfrac{\sqrt{a}+1}{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}\)
\(A=\dfrac{\sqrt{a}+1}{\sqrt{a}}\cdot\left(\sqrt{a}-1\right)\)
\(A=\dfrac{\left(\sqrt{a}+1\right)\left(\sqrt{a}-1\right)}{\sqrt{a}}\)
\(A=\dfrac{a-1}{\sqrt{a}}\)
b) Ta có:
\(a=4+2\sqrt{3}=\left(\sqrt{3}\right)^2+2\sqrt{3}\cdot1+1^2=\left(\sqrt{3}+1\right)^2\)
Thay vào A ta có:
\(A=\dfrac{\left(\sqrt{3}+1\right)^2-1}{\sqrt{\left(\sqrt{3}+1\right)^2}}=\dfrac{4+2\sqrt{3}-1}{\sqrt{3}+1}=\dfrac{3+2\sqrt{3}}{\sqrt{3}+1}\)
c) \(A< 0\) khi:
\(\dfrac{a-1}{\sqrt{a}}< 0\)
Mà: \(\sqrt{a}\ge0\forall x\) (xác định)
\(\Leftrightarrow a-1< 0\)
\(\Leftrightarrow a< 1\)
Kết hợp với đk:
\(0< a< 1\)
Bài 3:
Rút gọn: \(\dfrac{a\sqrt{b}+b}{a-b}\sqrt{\dfrac{ab+b^2-2\sqrt{ab^3}}{a\left(a+2\sqrt{b}\right)+b}}:\dfrac{1}{\sqrt{a}+\sqrt{b}}\) với a > 0, b \(\ge\) 0
Cần gấp !!!
Với `a > 0,b >= 0` có:
`Bth=[a\sqrt{b}+b]/[a-b] . \sqrt{[b(a+b-2\sqrt{ab})]/[a^2+2a\sqrt{b}+b]} . (\sqrt{a}+\sqrt{b})`
`=[\sqrt{b}(a+\sqrt{b})]/[a-b].\sqrt{[b(\sqrt{a}-\sqrt{b})^2]/[(a+\sqrt{b})^2]}.(\sqrt{a}+\sqrt{b})`
`=[\sqrt{b}(a+\sqrt{b})|\sqrt{a}-\sqrt{b}|.\sqrt{b}.(\sqrt{a}+\sqrt{b})]/[(a-b)(a+\sqrt{b})]`
`=[b|\sqrt{a}-\sqrt{b}|]/[\sqrt{a}-\sqrt{b}]`
`={(b\text{ nếu }\sqrt{a} >= \sqrt{b}),(-b\text{ nếu }\sqrt{a} < \sqrt{b}):}`