Những câu hỏi liên quan
PQ
Xem chi tiết
TT
19 tháng 8 2015 lúc 22:43

Ta chỉ cần chứng minh \(BD=CE.\)   (Thực vậy, khi đó nếu I là trung điểm BC thì BI=EI).

Để cho tiện ta kí hiệu \(a=BC,b=CA,c=AB.\)

Gọi \(D,P,Q\) là tiếp điểm của đường tròn nội tiếp với ba cạnh \(BC,CA,AB.\)

Gọi \(E,R,S\) là tiếp điểm của đường tròn bàng tiếp góc A với ba cạnh \(BC,CA,AB.\)

Ta có \(BD=BQ,CR=CD,AQ=AR\Rightarrow BD+CR+AQ=\frac{a+b+c}{2}\)

Mặt khác \(AR+CR=b\Rightarrow BD=\frac{a+c-b}{2}\).        (1)

Theo tính chất tiếp tuyến

\(2AR=AR+AS=AB+AC+BS+CR=AB+AC+BC\Rightarrow AR=\frac{a+b+c}{2}.\)

Do đó \(CE=CR=AR-AC=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}.\)    (2)

Từ (1),(2) suy ra \(BD=CE\).

 

Bình luận (0)
TD
Xem chi tiết
NL
10 tháng 1 2022 lúc 18:32

Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)

Gọi các tiếp điểm với AB và AC là E và F

Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:

\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)

Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)

\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)

\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)

Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)

\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)

\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)

Bình luận (0)
NL
10 tháng 1 2022 lúc 18:33

undefined

Bình luận (0)
H24
Xem chi tiết
MC
Xem chi tiết
H24
Xem chi tiết
H24
Xem chi tiết
ND
9 tháng 8 2021 lúc 20:32

A B C I D F J

Bổ đề: Tam giác ABC cân tại A. Điểm D nằm trên trung trực của BC khi và chỉ khi \(\widehat{ADB}=\widehat{ADC}\).

Giải: Vì \(CD=CA\), điểm I nằm trên phân giác \(\widehat{ACD}\) nên \(ID=IA\)

Ta thấy (J) tiếp xúc với CA tại A, suy ra \(\widehat{AFI}=\widehat{IAC}=\widehat{IAF}\) hay \(IA=IF\)

Từ đó \(\Delta DIF\) cân tại I. Chú ý rằng \(\widehat{IBF}=\widehat{IBD}\), suy ra \(BF=BD\) theo bổ đề.

Bình luận (0)
 Khách vãng lai đã xóa
NT
Xem chi tiết
NB
Xem chi tiết
BD
Xem chi tiết
LP
13 tháng 8 2023 lúc 17:03

 Đối với điểm A nằm ngoài đường tròn (O;R), kí hiệu dA là đường thẳng nối 2 tiếp điểm của 2 tiếp tuyến kẻ từ A tới (O).

 Đối với điểm A nằm bên trong đường tròn, kí hiệu dA để chỉ đường thẳng vuông góc với OA tại T với T là điểm mà \(OA.OT=R^2\) và A nằm giữa O và T.

Để giải được bài toán này, ta cần xét tính chất sau của đường dA:

 TC1: \(A\in d_B\Leftrightarrow B\in d_A\), tính chất này là hiển nhiên theo định nghĩa đường dA.

 TC2: A, B, C thẳng hàng khi và chỉ khi dA, dB, dC đồng quy hoặc đôi một song song.

CM: Nếu \(O\in AB\) thì hiển nhiên TC2 đúng.

Nếu \(O\notin AB\) thì gọi P là giao điểm của dA, dB. Vì \(P\in d_A,P\in d_B\) nên theo TC1, \(A\in d_P,B\in d_P\) nên \(AB\equiv d_P\). Do đó A, B, C thẳng hàng khi và chỉ khi \(C\in d_P\), có nghĩa là \(P\in d_C\) hay dA, dB, dC đồng quy tại P, TC2 được chứng minh.

 Bây giờ ta sẽ xét bổ đề sau:

 Bổ đề: Cho tam giác ABC, I là tâm đường tròn nội tiếp. K là trực tâm của tam giác IBC. M, N lần lượt là trung điểm của AB, AC. Khi đó \(MN\equiv d_K\) (đối với đường tròn I)

 

 CM: Gọi D, E lần lượt là tiếp điểm của (I) với BC, CA. DE cắt BI, CI, KC lần lượt tại L, J, T. Theo tính chất quen thuộc thì \(\widehat{BLA}=90^o\), suy ra \(ML=MA=MB\). Từ đó \(\widehat{MLB}=\widehat{MBL}=\widehat{LBC}\), suy ra ML//BC hay \(L\in MN\)

 Mặt khác, vì \(\widehat{LTC}=\widehat{LJC}=90^o\) nên tứ giác CJLT nội tiếp \(\Rightarrow IL.IT=IJ.IC=r^2\) (\(r\) là bán kính đường tròn (I)), theo định nghĩa đường \(d_X\) , suy ra được \(KC\equiv d_L\). Từ đó suy ra \(K\in d_L\). Theo TC1 suy ra \(L\in d_K\). Mà \(L\in MN,MN\perp IK\) nên theo định nghĩa đường \(d_X\), suy ra \(MN\equiv d_K\). Vậy bổ đề được chứng minh.

 Bây giờ ta sẽ quay lại bài toán chính:

 

 Từ kết quả của bổ đề, ta suy ra \(MN\equiv d_K,MP\equiv d_H\)

 Mặt khác, theo định nghĩa, ta có \(DM\equiv d_D\).

 Để ý rằng MN, MP, MD đồng quy tại M nên theo TC2, suy ra H, K, I thẳng hàng. Suy ra đpcm.

Bình luận (0)
LP
13 tháng 8 2023 lúc 17:07

 Ở chỗ cuối phải là \(MN\equiv d_H,MP\equiv d_K\) chứ không phải ngược lại đâu. (bổ sung thêm M, N, P lần lượt là trung điểm của BC, CA, AB)

Bình luận (0)
BD
13 tháng 8 2023 lúc 17:10

Mình cảm ơn rất nhiều ạ
 

Bình luận (0)
H24
Xem chi tiết