Cho đường tròn tâm I nội tiếp △ABC tiếp xúc với BC tại D; AC tại F; AB tại E. Gọi M,N,K là hình chiếu cửa BDC trên đường thẳng EF
1)CMR: △MEB đồng dạng với △KFC
2)CMR: ND là phân giác của góc BNC
cho tam giác ABC ,đường tròn nội tiếp tâm (I) tiếp xúc với cạnh BC tại D.đường Tròn bàng tiếp góc A tiếp xúc với BC tại E.chứng minh rằng D,E đối xứng nhau qua trung điểm của BC
Ta chỉ cần chứng minh \(BD=CE.\) (Thực vậy, khi đó nếu I là trung điểm BC thì BI=EI).
Để cho tiện ta kí hiệu \(a=BC,b=CA,c=AB.\)
Gọi \(D,P,Q\) là tiếp điểm của đường tròn nội tiếp với ba cạnh \(BC,CA,AB.\)
Gọi \(E,R,S\) là tiếp điểm của đường tròn bàng tiếp góc A với ba cạnh \(BC,CA,AB.\)
Ta có \(BD=BQ,CR=CD,AQ=AR\Rightarrow BD+CR+AQ=\frac{a+b+c}{2}\)
Mặt khác \(AR+CR=b\Rightarrow BD=\frac{a+c-b}{2}\). (1)
Theo tính chất tiếp tuyến
\(2AR=AR+AS=AB+AC+BS+CR=AB+AC+BC\Rightarrow AR=\frac{a+b+c}{2}.\)
Do đó \(CE=CR=AR-AC=\frac{a+b+c}{2}-b=\frac{a+c-b}{2}.\) (2)
Từ (1),(2) suy ra \(BD=CE\).
Cho tam giác ABC vuông tại A. Đường tròn tâm (I) nội tiếp tam giác ABC tiếp xúc với cạnh BC tại D. Chứng minh rằng: S\(\Delta ABC\) = BD.DC
Pitago: \(BC^2=AB^2+AC^2\Rightarrow BC^2-\left(AB^2+AC^2\right)=0\)
Gọi các tiếp điểm với AB và AC là E và F
Do đường tròn (I) nội tiếp tam giác, theo t/c hai tiếp tuyến cắt nhau:
\(BD=BE\) ; \(AE=AF\) ; \(CD=CF\)
Mà \(BD+CD=BC;AE+BE=AB;AF+CF=AC\)
\(\Rightarrow BC+AB-AC=BD+CD+AB+BE-AF-CF=BD+BE=2BD\)
\(\Rightarrow BD=\dfrac{BC+AB-AC}{2}\)
Tương tự: \(BC+AC-AB=2DC\Rightarrow DC=\dfrac{BC+AC-AB}{2}\)
\(\Rightarrow BD.DC=\dfrac{1}{4}\left(BC+AB-AC\right)\left(BC+AC-AB\right)=\dfrac{1}{4}\left[BC^2-\left(AB-AC\right)^2\right]\)
\(=\dfrac{1}{4}\left(BC^2-\left(AB^2+AC^2\right)+2AB.AC\right)=\dfrac{1}{2}AB.AC=S_{ABC}\)
Cho tam giác ABc , lấy D trên cạnh BC , vẽ đường tròn tâm I qua D tiếp xúc với AB tại B. Vẽ đường tròn tâm K qua D tiếp xúc với AC tại C . Gọi M là giao điểm của hai đường tròn đó
1. CM : tứ giác ABMC nội tiếp
2. Gọi O là tâm đường tròn ngoại tiếp tam giác ABC . CM : 3 đường tròn tâm I, tâm K và tâm O đồng quy
3. CM : MD di chuyển qua 1 điểm cố định
Các bác giúp em, em đang cần gấp cách giải.Cảm ơn mọi người!!!
Cho tam giác ABC. Một đường tròn tâm O nội tiếp tam giác ABC và tiếp xúc với BC tại D. Đường tròn tâm I là đường tròn bàng tiếp trong góc A của tam giác ABC và tiếp xúc với BC tại F. Vẽ đường kính DE của đường tròn (O). Chứng minh ràng A, E, F thẳng hàng.
Cho tam giác ABC, đường tròn tâm I nội tiếp tam giác tiếp xúc với các cạnh AB, AC, BC lần lượt tại D, E và F. DE cắt BC tại P. IF cắt đường tròn đường kính BC tại K.
CMR : PK là tiếp tuyến của đường tròn đường kính BC
Cho tam giác ABC(BC>AC) Đường tròn tâm C bán kính AC cắt BC tại D. Cho I là đường tròn nội tiếp tam giác ABC và T là đường tròn đi qua I và tiếp xúc với đường CA tại A. Đường AB và T giao nhau tại F(F khác A). CMR BF=BD
Bổ đề: Tam giác ABC cân tại A. Điểm D nằm trên trung trực của BC khi và chỉ khi \(\widehat{ADB}=\widehat{ADC}\).
Giải: Vì \(CD=CA\), điểm I nằm trên phân giác \(\widehat{ACD}\) nên \(ID=IA\)
Ta thấy (J) tiếp xúc với CA tại A, suy ra \(\widehat{AFI}=\widehat{IAC}=\widehat{IAF}\) hay \(IA=IF\)
Từ đó \(\Delta DIF\) cân tại I. Chú ý rằng \(\widehat{IBF}=\widehat{IBD}\), suy ra \(BF=BD\) theo bổ đề.
Cho đường tròn tâm O nội tiếp tam giác ABC tiếp xúc với các cạnh BC,CA,AB tương ứng tại D,E,F. Đường tròn tâm O' bàng tiếp góc BAC của tam giascABC tiếp xúc với BC và phần kéo dài của các cạnh AB,AC tại P,M,N
1. Chứng minh rằng BP=CD
2. Trên đường thẳng MN lấy các điểm I và K sao cho CK // AB, BI//AC .Chứng minh rằng các tứ giác BICE và BKCF là các hình bình hành.
3. Gọi (S) là đường tròn đi qua ba điểm I,K,P. Chứng minh (S) tiếp xúc với các đường thẳng BC,BI,CK
Cho tam giác ABC nội tiếp với đường tròn (O) , đường phân giác góc B^và C^ cắt đường tròn (O) tại D , E. Dựng đường tròn tâm D tiếp xúc với cạnh AC, đường tròn tâm E tiếp xúc với cạnh AB. Chứng minh rằng tâm của đường tròn nội tiếp tam giác ABC nằm trên tiếp tuyến chung của hai đường tròn (D) và (E).
Cho tam giác ABC có đường tròn nội tiếp ( I ) tiếp xúc với BC tại D. Gọi H, K là trực tâm tam giác AIB và AIC. Chứng minh rằng HK đi qua điểm D.
Đối với điểm A nằm ngoài đường tròn (O;R), kí hiệu dA là đường thẳng nối 2 tiếp điểm của 2 tiếp tuyến kẻ từ A tới (O).
Đối với điểm A nằm bên trong đường tròn, kí hiệu dA để chỉ đường thẳng vuông góc với OA tại T với T là điểm mà \(OA.OT=R^2\) và A nằm giữa O và T.
Để giải được bài toán này, ta cần xét tính chất sau của đường dA:
TC1: \(A\in d_B\Leftrightarrow B\in d_A\), tính chất này là hiển nhiên theo định nghĩa đường dA.
TC2: A, B, C thẳng hàng khi và chỉ khi dA, dB, dC đồng quy hoặc đôi một song song.
CM: Nếu \(O\in AB\) thì hiển nhiên TC2 đúng.
Nếu \(O\notin AB\) thì gọi P là giao điểm của dA, dB. Vì \(P\in d_A,P\in d_B\) nên theo TC1, \(A\in d_P,B\in d_P\) nên \(AB\equiv d_P\). Do đó A, B, C thẳng hàng khi và chỉ khi \(C\in d_P\), có nghĩa là \(P\in d_C\) hay dA, dB, dC đồng quy tại P, TC2 được chứng minh.
Bây giờ ta sẽ xét bổ đề sau:
Bổ đề: Cho tam giác ABC, I là tâm đường tròn nội tiếp. K là trực tâm của tam giác IBC. M, N lần lượt là trung điểm của AB, AC. Khi đó \(MN\equiv d_K\) (đối với đường tròn I)
CM: Gọi D, E lần lượt là tiếp điểm của (I) với BC, CA. DE cắt BI, CI, KC lần lượt tại L, J, T. Theo tính chất quen thuộc thì \(\widehat{BLA}=90^o\), suy ra \(ML=MA=MB\). Từ đó \(\widehat{MLB}=\widehat{MBL}=\widehat{LBC}\), suy ra ML//BC hay \(L\in MN\).
Mặt khác, vì \(\widehat{LTC}=\widehat{LJC}=90^o\) nên tứ giác CJLT nội tiếp \(\Rightarrow IL.IT=IJ.IC=r^2\) (\(r\) là bán kính đường tròn (I)), theo định nghĩa đường \(d_X\) , suy ra được \(KC\equiv d_L\). Từ đó suy ra \(K\in d_L\). Theo TC1 suy ra \(L\in d_K\). Mà \(L\in MN,MN\perp IK\) nên theo định nghĩa đường \(d_X\), suy ra \(MN\equiv d_K\). Vậy bổ đề được chứng minh.
Bây giờ ta sẽ quay lại bài toán chính:
Từ kết quả của bổ đề, ta suy ra \(MN\equiv d_K,MP\equiv d_H\)
Mặt khác, theo định nghĩa, ta có \(DM\equiv d_D\).
Để ý rằng MN, MP, MD đồng quy tại M nên theo TC2, suy ra H, K, I thẳng hàng. Suy ra đpcm.
Ở chỗ cuối phải là \(MN\equiv d_H,MP\equiv d_K\) chứ không phải ngược lại đâu. (bổ sung thêm M, N, P lần lượt là trung điểm của BC, CA, AB)
Cho tam giác ABC có đường tròn nội tiếp ( I ) tiếp xúc với BC tại D. Gọi H, K là trực tâm tam giác AIB và AIC. Chứng minh rằng HK đi qua điểm D.