Những câu hỏi liên quan
H24
Xem chi tiết
LH
4 tháng 8 2016 lúc 8:29
Câu 1: Áp dụng đ/lí pytago vào tam giác ABC vuông tại A CÓ:AB^2+AB^2=BC^2 Hay: 12^2+5^2=169=BC^2 => BC=13cm ÁP dụng hệ thức ta có: +) AB^2=BH.BC Hay: BH=AB^2:BC=144:13 =144/13(cm) Ta có CH=BC-BH=13-144/13=25/13(cm)
Bình luận (0)
LH
4 tháng 8 2016 lúc 8:31

Bạn chỉ cần áp dụng hệ thức lượng là đc rồi o0o

Bình luận (0)
NB
12 tháng 12 2016 lúc 15:30

Cho tam giác ABC vuông tại A , đường cao AH . Chứng minh rằng 1/AH^2=1/AB^2+1/ac^2

Bình luận (0)
IK
Xem chi tiết
GH
4 tháng 7 2023 lúc 16:30

loading...  

Bình luận (0)
H24
Xem chi tiết
TP
28 tháng 7 2015 lúc 11:32

bạn hỏi nhiều quá , các bạn nhìn vào ko biết trả lời sao đâu !!!

Bình luận (0)
CC
13 tháng 2 2016 lúc 11:14

rối mắt quá mà viết dày nên bài nọ xọ bài kia mình ko trả lời được cho dù biết rất rõ

Bình luận (0)
KT
5 tháng 3 2016 lúc 21:08

viet ba dao nhu the co ma lam dc!!! 

Bình luận (0)
YS
Xem chi tiết
VM
23 tháng 1 2017 lúc 17:35

Bài 1: (bạn tự vẽ hình vì hình cũng dễ)

Ta có: AB = AH + BH = 1 + 4 = 5 (cm)

Vì tam giác ABC cân tại B => BA = BC => BC = 5 (cm)

Xét tam giác BCH vuông tại H có:

  \(HB^2+CH^2=BC^2\left(pytago\right)\)

  \(4^2+CH^2=5^2\)

  \(16+CH^2=25\)

\(\Rightarrow CH^2=25-16=9\)

\(\Rightarrow CH=\sqrt{9}=3\left(cm\right)\)

Tới đây xét tiếp pytago với tam giác ACH là ra AC nhé

Bình luận (0)
VM
23 tháng 1 2017 lúc 17:38

Bài 2: Sử dụng pytago với tam giác ABH => AH

Sử dụng pytago với ACH => AC

Bình luận (0)
HA
Xem chi tiết
MN
Xem chi tiết
NT
16 tháng 12 2021 lúc 19:49

a: \(AH=4\sqrt{3}\left(cm\right)\)

HC=12cm

BC=16cm

Bình luận (0)
H24
Xem chi tiết
NT
8 tháng 9 2023 lúc 22:10

BC=BH+CH=13cm

Xét ΔABC vuông tại A có AH là đường cao

nên AH^2=HB*HC; AB^2=BH*BC; AC^2=CH*BC

=>\(AH=\sqrt{4\cdot9}=6\left(cm\right);AB=\sqrt{4\cdot13}=2\sqrt{13}\left(cm\right);AC=\sqrt{9\cdot13}=3\sqrt{13}\left(cm\right)\)

Bình luận (0)
NH
Xem chi tiết
NT
28 tháng 10 2021 lúc 21:52

a: \(AH=\sqrt{2\cdot4}=2\sqrt{2}\left(cm\right)\)

\(AB=\sqrt{AH^2+HB^2}=2\sqrt{3}\left(cm\right)\)

Bình luận (0)
DN
Xem chi tiết
AH
11 tháng 6 2021 lúc 1:47

Hình vẽ:

Bình luận (0)
AH
11 tháng 6 2021 lúc 1:49

Lời giải:

Xét tam giác $CHA$ và $CAB$ có:

$\widehat{CHA}=\widehat{CAB}=90^0$

$\widehat{C}$ chung

$\Rightarrow \triangle CHA\sim \triangle CAB$ (g.g)

$\Rightarrow \frac{CH}{CA}=\frac{CA}{CB}$

$\Rightarrow CA^2=CH.CB=CH(CH+BH)$

$\Leftrightarrow 16=CH(CH+1,8)$

$\Leftrightarrow (CH-3,2)(CH+5)=0$

Vì $CH>0$ nên $CH=3,2$ (cm)

$BC=BH+CH=1,8+3,2=5$ (cm)

$AB=\sqrt{BC^2-AC^2}=\sqrt{5^2-4^2}=3$ (cm)

Bình luận (1)