Những câu hỏi liên quan
LN
Xem chi tiết
NT
19 tháng 12 2021 lúc 20:47

a: a=36

b=6

Bình luận (0)
KH
19 tháng 12 2021 lúc 20:59

bài này t biết làm nè nhưng dài quá bạn có zalo ko mik chụp cho

Bình luận (2)
NC
30 tháng 12 2023 lúc 10:48

a: a=36

b=6

Bình luận (0)
CL
Xem chi tiết
PB
Xem chi tiết
CT
24 tháng 11 2018 lúc 8:17

Vì (a,b) = 6 nên a = 6x, b = 6y, với (x,y)=1

Suy ra a.b=6x.6y = 36xy.

Lại có a.b = [a,b].(a,b) = 120.6 = 720

Suy ra 36xy = 720 => xy = 20

Giả sử x < y, và (x,y)=1 ta có các trường hợp sau:

Từ đó suy ra a,b có các trường hợp sau:

Bình luận (0)
PB
Xem chi tiết
CT
22 tháng 12 2019 lúc 14:47

Bình luận (0)
H24
Xem chi tiết
H24
Xem chi tiết
BL
16 tháng 12 2017 lúc 14:48

Câu hỏi của Bùi Đức Lộc - Tiếng Việt lớp 1 - Học toán với OnlineMath

Nhớ xem và !

Bình luận (0)
NT
16 tháng 12 2017 lúc 14:51

a, 24 và 10

b, 6 và 30

c, 6 và 36

d, <không có trường hợp nào>

e, 36 và 6

Chúc bạn học giỏi !

<Lưu ý : Bạn xem lại câu d>

Bình luận (0)
DH
20 tháng 12 2017 lúc 20:49

d) Do (a,b) = 5 => a = 5m

                              b = 5n

                ( m,n ) = 1

a : b = 2,6 => a/b = 13/5 = 5m/5n => m = 13 ; n =5

=> a = 65                b = 25

Bình luận (0)
MA
Xem chi tiết
TB
Xem chi tiết
PM
Xem chi tiết
LP
15 tháng 10 2023 lúc 22:06

 Trước tiên, ta cần chứng minh 2 bổ đề sau:

 Bổ đề 1: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó  \(ƯCLN\left(a,b\right).BCNN\left(a,b\right)=a.b\)

 Bổ đề 2: Cho 2 số tự nhiên \(a,b\) khác 0. Khi đó:\(ƯCLN\left(a,b\right)+BCNN\left(a,b\right)\ge a+b\)

 Chứng minh:

 Bổ đề 1: Đặt \(\left(a,b\right)=1\) (từ nay ta sẽ kí hiệu \(\left(a,b\right)=ƯCLN\left(a,b\right)\) và \(\left[a;b\right]=BCNN\left(a,b\right)\) cho gọn) \(\Rightarrow\left\{{}\begin{matrix}a=dk\\b=dl\end{matrix}\right.\left(\left(k,l\right)=1\right)\)

  Nên \(\left[a,b\right]=dkl\) \(\Rightarrow\left(a;b\right)\left[a;b\right]=dk.dl=ab\). Ta có đpcm.

 Bổ đề 2: Vẫn giữ nguyên kí hiệu như ở chứng minh bổ đề 1. Ta có \(k\ge1,l\ge1\) nên \(\left(k-1\right)\left(l-1\right)\ge0\)

 \(\Leftrightarrow kl-k-l+1\ge0\)

 \(\Leftrightarrow kl+1\ge k+l\)

 \(\Leftrightarrow dkl+d\ge dk+dl\)

 \(\Leftrightarrow\left[a,b\right]+\left(a,b\right)\ge a+b\) (đpcm)

Vậy 2 bổ đề đã được chứng minh.

a) Áp dụng bổ đề 1, ta có \(ab=\left(a,b\right)\left[a,b\right]=15.180=2700\) và \(a+b\le\left(a,b\right)+\left[a,b\right]=195\). Do \(b\ge a\) \(\Rightarrow a^2\le2700\Leftrightarrow a\le51\)

 Mà \(15|a\) nên ta đi tìm các bội của 15 mà nhỏ hơn 51:

  \(a\in\left\{15;30;45\right\}\)

 Khi đó nếu \(a=15\) thì \(b=180\) (thỏa)

 Nếu \(a=30\) thì \(b=90\) (loại)

 Nếu \(a=45\) thì \(b=60\) (thỏa)

 Vậy có 2 cặp số a,b thỏa mãn ycbt là \(15,180\) và \(45,60\)

Câu b làm tương tự.

Bình luận (0)
HL
15 tháng 10 2023 lúc 21:03

 Ko bt

Bình luận (0)
TM
15 tháng 10 2023 lúc 21:08

Tớ chịu🤔

Bình luận (0)