Những câu hỏi liên quan
MN
Xem chi tiết
H24
20 tháng 3 2022 lúc 21:09

lỗi h/ảnh

Bình luận (2)
AA
Xem chi tiết
H24
30 tháng 10 2021 lúc 14:36

18. B

19. C

20.C

Bình luận (0)
CB
30 tháng 10 2021 lúc 14:37

18.B
19.C
20.C

Bình luận (1)
MN
Xem chi tiết
TT
20 tháng 3 2022 lúc 19:51

D là j?

Bình luận (2)
TT
20 tháng 3 2022 lúc 19:54

B

Bình luận (0)
H24
Xem chi tiết
DD
1 tháng 12 2021 lúc 21:25

A

Bình luận (1)
AL
1 tháng 12 2021 lúc 21:28
Bình luận (0)
DD
1 tháng 12 2021 lúc 21:30

Dẫu '' = '' xảy ra khi và chỉ khi ( x - y )2 + (x – 1)2 + (y + 2)2 = 0 

Bình luận (0)
RO
Xem chi tiết
H24
19 tháng 11 2021 lúc 16:40

\(A=2,7+\left|x-1,5\right|\ge2,7\)

Dấu \("="\Leftrightarrow x-1,5=0\Leftrightarrow x=1,5\)

Vậy \(A_{min}=2,7\)

\(B=\left|4,1+x\right|-6,3\ge-6,3\)

Dấu \("="\Leftrightarrow4,1+x=0\Leftrightarrow x=-4,1\)

Vậy \(B_{min}=-6,3\)

Bình luận (0)
RO
Xem chi tiết
LL
20 tháng 11 2021 lúc 14:19

a) \(A=2,7+\left|x-1,5\right|\ge2,7\)

\(minA=2,7\Leftrightarrow x=1,5\)

b) \(B=\left|4,1+x\right|-6,3\ge-6,3\)

\(minB=-6,3\Leftrightarrow x=-4,1\)

 

Bình luận (1)
H24
20 tháng 11 2021 lúc 14:19

a)

Ta có:

\(\left|x-1,5\right|\)≥0

=>\(2,7+\left|x-1,5\right|\)≥2,7

GTNN:A=2,7 khi  x-1,5=0

                                x=1,5

Ta có:

\(\left|4,1+x\right|\)≥0

=>\(\left|4,1+x\right|-6,3\)≥-6,3

GTNN:B=6,3 khi 4,1+x=0

                              x=-4,1

Bình luận (0)
BF
20 tháng 11 2021 lúc 14:43

a)

Ta có:

|x−1,5||x−1,5|≥0

=>2,7+|x−1,5|2,7+|x−1,5|≥2,7

GTNN:A=2,7 khi  x-1,5=0

                                x=1,5

Ta có:

|4,1+x||4,1+x|≥0

=>|4,1+x|−6,3|4,1+x|−6,3≥-6,3

GTNN:B=6,3 khi 4,1+x=0

                              x=-4,1

Bình luận (0)
Xem chi tiết
NH
18 tháng 8 2020 lúc 15:58

Bài 2 : 

a) \(A=3,7+\left|4,3-x\right|\ge3,7\)

Min A = 3,7 \(\Leftrightarrow x=4,3\)

b) \(B=\left|3x+8,4\right|-14\ge-14\)

Min B = -14 \(\Leftrightarrow x=\frac{-14}{5}\)

c) \(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Min C = 17,5 \(\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=\frac{-3}{2}\end{cases}}\)

d) \(D=\left|x-2018\right|+\left|x-2017\right|\)

\(D=\left|2018-x\right|+\left|x-2017\right|\ge\left|2018-x+x-2017\right|=1\)

Min D =1 \(\Leftrightarrow\left(2018-x\right)\left(x-2017\right)\ge0\)

\(\Leftrightarrow2017\le x\le2018\)

Bình luận (0)
 Khách vãng lai đã xóa
HN
24 tháng 8 2021 lúc 20:49

\(A=3,7+\left|4,3-x\right|\)

Ta có \(\left|4,3-x\right|\ge0\Leftrightarrow A=3,7+\left|4,3-x\right|\ge3,7\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|4,3-x\right|=0\Leftrightarrow4,3-x=0\Leftrightarrow x=4,3\)

\(B=\left|3x+8,4\right|-14\)

Ta có \(\left|3x+8,4\right|\ge0\Leftrightarrow B=\left|3x+8,4\right|-14\ge-14\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left|3x+8,4\right|=0\Leftrightarrow3x=-8,4\Leftrightarrow x=2,8\)

\(C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\)

Ta có \(\hept{\begin{cases}\left|4x-3\right|\ge0\\\left|5y+7,5\right|\ge0\end{cases}}\Leftrightarrow C=\left|4x-3\right|+\left|5y+7,5\right|+17,5\ge17,5\)

Dấu '' = '' xảy ra \(\Leftrightarrow\hept{\begin{cases}\left|4x-3\right|=0\\\left|5y+7,5\right|=0\end{cases}}\Leftrightarrow\hept{\begin{cases}4x-3=0\\5y+7,5=0\end{cases}}\Leftrightarrow\hept{\begin{cases}x=\frac{3}{4}\\y=-1,5\end{cases}}\)

\(D=\left|x-2018\right|+\left|x-2017\right|\)

\(\Leftrightarrow D=\left|x-2018\right|+\left|2017-x\right|\)

Áp dụng bất đẳng thức \(\left|A\right|+\left|B\right|\ge\left|A+B\right|\)ta có

\(D\ge\left|x-2018+2017-x\right|=\left|-1\right|=1\)

Dấu '' = '' xảy ra \(\Leftrightarrow\left(2017-x\right)\left(x-2018\right)\ge0\Leftrightarrow2018\ge x\ge2017\)

Bình luận (0)
 Khách vãng lai đã xóa
TN
Xem chi tiết
NT
16 tháng 5 2023 lúc 22:55

với những dạng như thế này mà tn thì bạn nên thay thẳng vào luôn nha

Bình luận (0)
BG
Xem chi tiết
TC
6 tháng 11 2021 lúc 15:43

Ta có:

\(B=\left(2x+\dfrac{5}{2}\right)^{2022}+2021\)

\(\ge0+2021=2021\)

Vậy \(B_{MIN}=2021\), đạt được khi và chỉ khi \(2x+\dfrac{5}{2}=0\Leftrightarrow2x=-\dfrac{5}{2}\Leftrightarrow x=-\dfrac{5}{4}\)

 

 

Bình luận (0)
H24
6 tháng 11 2021 lúc 15:43

B

Bình luận (0)