Chứng minh rằng các phân số sau tối giản
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
Chứng minh rằng phân số sau tối giản
\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
Lời giải:
Gọi $d$ là ƯCLN $(2^{2024}+3, 2^{2023}+1)$
Ta có:
$2^{2024}+3\vdots d$
$2^{2023}+1\vdots d$
$\Rightarrow 2^{2024}+3-2(2^{2023}+1)\vdots d$
$\Rightarrow 1\vdots d$
$\Rightarrow d=1$
$\Rightarrow \frac{2^{2024+3}{2^{2023}+1}$ là ps tối giản.
Chứng minh rằng các phân số sau tối giản
a) \(\dfrac{2n+7}{2n+3}\) (n ∈ N)
b)\(\dfrac{6n+5}{8n+7}\)(n ∈ N)
c)\(\dfrac{2^{2024}+3}{2^{2023}+1}\) tối giản
a: Gọi d=ƯCLN(2n+7;2n+3)
=>2n+7 chia hết cho d và 2n+3 chia hết cho d
=>2n+7-2n-3 chia hết cho d
=>4 chia hết cho d
mà 2n+7 lẻ
nên d=1
=>PSTG
b: Gọi d=ƯCLN(6n+5;8n+7)
=>4(6n+5)-3(8n+7) chia hết cho d
=>-1 chia hết cho d
=>d=1
=>PSTG
\(\dfrac{2^{2023}+3^{2023}}{2^{2024}+3^{2024}}\) chứng minh phấn số đó tối giản
bài1 chứng minh rằng:
b, 2n+3/4n+8 là phân số tối giản
c, 3n+2/5n+3 là phân số tối giản
b: Gọi d=ƯCLN(2n+3;4n+8)
=>4n+8-2(2n+3) chia hết cho d
=>2 chia hết cho d
mà 2n+3 là số lẻ
nên d=1
=>PSTG
c: Gọi d=ƯCLN(3n+2;5n+3)
=>15n+10-15n-9 chia hết cho d
=>1 chia hết cho d
=>d=1
=>PSTG
Gọi d=ƯCLN(2n+3;4n+8)
=>2n+3 4n+8 ⋮ d
=>2(2n+3)và 4n+8 ⋮ d
mà 2n+3 là số lẻ
nên d=1
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
a) \(\dfrac{n+1}{2n+3}\)
b) \(\dfrac{2n+3}{4n+8}\)
c) \(\dfrac{3n+2}{5n+3}\)
Gọi Ư(n+1;2n+3) = d ( \(d\in\)N*)
\(n+1=2n+2\left(1\right);2n+3\left(2\right)\)
Lấy (2 ) - (1) ta được : \(2n+3-2n+2=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
Gọi Ư\(\left(3n+2;5n+3\right)=d\)( d \(\in\)N*)
\(3n+2=15n+10\left(1\right);5n+3=15n+9\left(2\right)\)
Lấy (!) - (2) ta được : \(15n+10-15n-9=1⋮d\Rightarrow d=1\)
Vậy ta có đpcm
a) Gọi \(d\) là UCLN \(\left(n+1,2n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}n+1⋮d\\2n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}2n+2⋮d\\2n+3⋮d\end{matrix}\right.\)
\(\Rightarrow2n+3-\left(2n+2\right)⋮d\)
\(\Rightarrow1⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
b) Gọi \(d\) là \(UCLN\left(2n+3,4n+8\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}2n+3⋮d\\4n+8⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}4n+6⋮d\\4n+8⋮d\end{matrix}\right.\)
\(\Rightarrow4n+8-\left(4n+6\right)⋮d\)
\(\Rightarrow2⋮d\)
\(\Rightarrow d\in\left\{1;2\right\}\)
Mà 2n+3 là số lẻ nên
\(\Rightarrow d=1\left(đpcm\right)\)
c) Gọi \(d\) là \(UCLN\left(3n+2;5n+3\right)\left(d\in N\right)\)
Ta có : \(\left[{}\begin{matrix}3n+2⋮d\\5n+3⋮d\end{matrix}\right.\Rightarrow\left[{}\begin{matrix}15n+10⋮d\\15n+9⋮d\end{matrix}\right.\)
\(\Rightarrow15n+10-\left(15n+9\right)⋮d\)
\(\Rightarrow d=1\left(đpcm\right)\)
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a)\(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản
chứng minh rằng mỗi phân số sau đều tối giản với mọi số n
a) \(\dfrac{2n+1}{3n+2}\)
b) \(\dfrac{3n+2}{5n+3}\)
a: Gọi d=UCLN(2n+1;3n+2)
\(\Leftrightarrow6n+4-6n-3⋮d\)
=>d=1
=>Phân số tối giản
b: Gọi d=UCLN(3n+2;5n+3)
\(\Leftrightarrow15n+10-15n-9⋮d\)
=>d=1
=>Phân số tối giản
18. Chứng minh rằng các phân số sau là phân số tối giản với mọi số tự nhiên n:
\(\dfrac{ n+1}{2n+3 }\) ý a
\(\dfrac{ 2n+3}{4n+8 }\)ý b
\(\dfrac{ 3n+2}{ 5n+3}\) ý c
Gọi Ư( n+1; 2 n+3 ) = d ( d∈N* )
n +1 = 2n + 2 (1) ; 2n+3*) (2)
Lấy (2 ) - (1) ta được : 2n + 3 - 2n + 2 = 1:d => d =1
vậy ta có đpcm
gọi Ư ( 3n + 2 ; 5n + 3 ) = d ( d∈N* )
3n +2 = 15 n + 10 (1) ; 5n + 3 =15n + 9 (2)
lấy (!) - (2) ta được 15n + 10 - 15n - 9 = 1:d => d = 1
Vậy ta có đpcm
chứng minh rằng phân số sau tối giản với mọi số tự nhiên n
\(\dfrac{3n+2}{5n+3}\)
Gọi ƯCLN(3n + 2, 5n + 3) = d (d thuộc N*)
Ta có:
3n + 2 chia hết cho d
5n + 3 chia hết cho d
<=> 5(3n + 2) chia hết cho d = (15n + 10) chia hết cho d
<=> 3(5n +3) chia hết cho d = (15n + 9) chia hết cho d
=> (15n + 10) - (15n + 9) chia hết cho d = 1 chia hết cho d
=> d = 1
=> 3n + 2 và 5n + 3 là hai số nguyên tố cùng nhau.
Vậy Phân số là phân số tối giản.
tự làm nha thấy đúng cho mik một like