Những câu hỏi liên quan
H24
Xem chi tiết
TA
Xem chi tiết
LL
29 tháng 8 2021 lúc 10:02

\(x^4-2x^3+3x^2-4x+2005=\left(x^4-2x^3+x^2\right)+2\left(x^2-2x+1\right)+2003=\left(x^2-x\right)^2+2\left(x-1\right)^2+2003\)

Vì \(\left(x^2-x\right)^2\ge0\forall x,\left(x-1\right)^2\ge0\forall x\)

\(\Rightarrow x^4-2x^3+3x^2-4x+2005\ge0+0+2013=2013\)

\(ĐTXR\Leftrightarrow x=1\)

Bình luận (1)
VM
Xem chi tiết
VM
3 tháng 5 2023 lúc 12:48

Mình nghĩ ra câu C rồi bạn nào giúp mình nghĩ nốt câu A,B hộ mình nhé mình cảm ơn!

Bình luận (0)
NT
11 tháng 5 2023 lúc 14:56

a:6x-5-9x^2

=-(9x^2-6x+5)

=-(9x^2-6x+1+4)

=-(3x-1)^2-4<=-4

=>A>=2/-4=-1/2

Dấu = xảy ra khi x=1/3

b: \(B=\dfrac{4x^2-6x+4-1}{2x^2-3x+2}=2-\dfrac{1}{2x^2-3x+2}\)

2x^2-3x+2=2(x^2-3/2x+1)

=2(x^2-2*x*3/4+9/16+7/16)

=2(x-3/4)^2+7/8>=7/8

=>-1/2x^2-3x+2<=-1:7/8=-8/7

=>B<=-8/7+2=6/7

Dâu = xảy ra khi x=3/4

Bình luận (0)
BB
Xem chi tiết
AH
9 tháng 10 2021 lúc 9:27

Lời giải:
ĐKXĐ: $-2\leq x\leq 7$

Áp dụng BĐT dạng $\sqrt{a}+\sqrt{b}\geq \sqrt{a+b}$ (BĐT đã khá quen thuộc trong SGK rồi) ta có:

$M\geq \sqrt{4x+8+21-3x}=\sqrt{29+x}\geq \sqrt{29+(-2)}=3\sqrt{3}$ do $x\geq -2$

Vậy $M_{\min}=3\sqrt{3}$ khi $x=-2$

Bình luận (0)
DH
Xem chi tiết
DH
23 tháng 7 2017 lúc 12:19

\(A=x^4-2x^3+3x^2-4x+7\)

\(=\left(x^4-2x^3+x^2\right)+\left(2x^2-4x+2\right)+5\)

\(=\left(x^2-x\right)^2+2\left(x-1\right)^2+5\ge5\forall x\)

Dấu "=" xảy ra \(\Leftrightarrow\hept{\begin{cases}x^2-x=0\\x-1=0\end{cases}\Rightarrow x=1}\)

Vậy \(A_{min}=5\Leftrightarrow x=1\)

Bình luận (0)
NL
Xem chi tiết
NT
15 tháng 12 2022 lúc 21:27

a: =-x^2+6x-4

=-(x^2-6x+4)

=-(x^2-6x+9-5)

=-(x-3)^2+5<=5

Dấu = xảy ra khi x=3

b: =3(x^2-5/3x+7/3)

=3(x^2-2*x*5/6+25/36+59/36)

=3(x-5/6)^2+59/12>=59/12

Dấu = xảy ra khi x=5/6

c: \(=-\left(x-3\right)^2+2\left|x-3\right|\)

\(=-\left[\left(\left|x-3\right|\right)^2-2\left|x-3\right|+1-1\right]\)

\(=-\left(\left|x-3\right|-1\right)^2+1< =1\)

Dấu = xảy ra khi x=4 hoặc x=2

Bình luận (0)
NC
Xem chi tiết
KN
4 tháng 10 2020 lúc 21:50

\(A=x^4-3x^3+4x^2-3x+10=\left(x^4-3x^3+4x^2-3x+1\right)+9=\left(x-1\right)^2\left(x^2-x+1\right)+9\ge9\)(do \(\hept{\begin{cases}\left(x-1\right)^2\ge0\forall x\\x^2-x+1>0\forall x\end{cases}}\))

Đẳng thức xảy ra khi x = 1

Bình luận (0)
 Khách vãng lai đã xóa
HB
Xem chi tiết
BT
Xem chi tiết