Những câu hỏi liên quan
NT
Xem chi tiết
NT
2 tháng 4 2021 lúc 20:53

a) Thay m=1 vào phương trình, ta được:

\(x^2-2x+1+1^2-1=0\)

\(\Leftrightarrow x^2-2x+1=0\)

\(\Leftrightarrow\left(x-1\right)^2=0\)

\(\Leftrightarrow x-1=0\)

hay x=1

Vậy: Khi m=1 thì tập nghiệm của phương trình là S={1}

Bình luận (0)
QH
Xem chi tiết
NT
6 tháng 4 2023 lúc 13:30

\(\Delta=\left(-2m\right)^2-4\left(m^2-m+1\right)\)

=4m^2-4m^2+4m-4=4m-4

Để (1) có 2 nghiệm thì 4m-4>=0

=>m>=1

 

Bình luận (0)
NN
Xem chi tiết
ND
Xem chi tiết
LD
21 tháng 5 2016 lúc 9:41

Hoa Sinh Thcs Gia Thuy

Bình luận (0)
H24
Xem chi tiết
XO
4 tháng 4 2023 lúc 23:10

a) Ta có :  \(\Delta"=\left(-m\right)^2-\left(m-2\right)=m^2-m+2=\left(m-\dfrac{1}{2}\right)^2+\dfrac{7}{4}>0\forall m\)

=> Phương trình luôn có 2 nghiệm phân biệt

b) Hệ thức Viete : 

\(\left\{{}\begin{matrix}x_1+x_2=2m\\x_1x_2=m-2\end{matrix}\right.\)

Khi đó \(M=\dfrac{-24}{x_1^2+x_2^2-6x_1x_2}=\dfrac{-24}{\left(x_1+x_2\right)^2-8x_1x_2}\)

\(=\dfrac{-24}{\left(2m\right)^2-8.\left(m-2\right)}=\dfrac{-6}{m^2-2m+4+=}=\dfrac{-6}{\left(m-1\right)^2+3}\)

Do (m - 1)2 + 3 \(\ge3\forall m\)

nên \(\dfrac{6}{\left(m-1\right)^2+3}\le2\Leftrightarrow M=\dfrac{-6}{\left(m-1\right)^2+3}\ge-2\)

Vậy Mmin = -2 <=> m = 1

Bình luận (0)
H24
Xem chi tiết
NT
7 tháng 3 2021 lúc 22:22

Phương trình đâu bạn?

Bình luận (2)
TS
Xem chi tiết
NL
29 tháng 3 2022 lúc 19:13

\(m>1\Rightarrow ac=-m-3< 0\Rightarrow\) pt luôn có 2 nghiệm trái dấu

Theo hệ thức Viet: \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-1\right)\\x_1x_2=-m-3\end{matrix}\right.\)

\(A=\dfrac{2\left(x_1+x_2\right)^2-6x_1x_2}{x_1+x_2}=\dfrac{2.4\left(m-1\right)^2+6\left(m+3\right)}{2\left(m-1\right)}\)

\(=\dfrac{4\left(m-1\right)^2+3\left(m-1\right)+12}{m-1}=4\left(m-1\right)+\dfrac{12}{m-1}+3\)

\(A\ge2\sqrt{4\left(m-1\right).\dfrac{12}{m-1}}+3=3+8\sqrt{3}\)

Dấu "=" xảy ra khi \(4\left(m-1\right)=\dfrac{12}{m-1}\Rightarrow m=1+\sqrt{3}\)

Bình luận (0)
H24
Xem chi tiết
AN
25 tháng 2 2017 lúc 8:47

Ta có: \(x^2-2mx+m-7=0\)

Ta có: \(\Delta'=m^2-m+7>0\)

\(\Rightarrow\)Phương trình luôn có 2 nghiệm phân biệt

Theo vi - et thì (sao không tin ổng, ổng đáng tin cậy lắm đấy :D)

\(\hept{\begin{cases}x_1+x_2=2m\\x_1^2.x_2^2=m-7\end{cases}}\)

Theo đề bài ta có:

\(P=|x_1-x_2|\)

\(\Leftrightarrow P^2=x_1^2-2x_1x_2+x_2^2=\left(x_1+x_2\right)^2-4x_1x_2\)

\(=\left(2m\right)^2-4\left(m-7\right)=4m^2-4m+28=\left(2m-1\right)^2+27\ge27\)

\(\Rightarrow P\ge3\sqrt{3}\)

Dấu =  xảy ra khi \(m=\frac{1}{2}\)

Bình luận (0)
BT
24 tháng 2 2017 lúc 22:08

x2 - 2mx + m - 7 = 0

(a= 1; b=-2m; c=m-7)

<=> \(\Delta\)= b2-4ac

\(\Leftrightarrow\)\(\Delta\)= (-2m)2 -4\(\times\)1\(\times\)(m-7)

\(\Leftrightarrow\)\(\Delta\)= 4m2-4m+28

= 4m2-4m+28 >= 0

vậy pt có 2 ng với mọi m

Theo đl vi-et, t/c:

s=x1+x2=\(\frac{-b}{a}\)=-2m

p=x1\(\times\)x2=\(\frac{c}{a}\)= m + 7

x1 + x2 + x1 \(\times\)x2

= S + P

= -2m + m+7

= -m +7

min A = 0 khi

-m+7=0

\(\Rightarrow\)m=7

Bình luận (0)
H24
25 tháng 2 2017 lúc 7:59

May có ông vi et không thì toi

Bình luận (0)
H24
Xem chi tiết