Cho : \(x^2-x+m+1=0\)
Tìm m để pt có 2 nghiệm thỏa mãn : \(x_1^2+x_1x_2+3x_2=7\)
Cho PT $x^2-2(m-1)x-2m=0$
Tìm $m$ để PT có 2 nghiệm $x_1,x_2$ thỏa mãn $x_1^2+3x_2-4x_1x_2=5$
P/t có : \(\Delta\)' = \(\left(m-1\right)^2-\left(-2m\right)=m^2+1\ge1>0\forall m\) -> P/t có 2 no x1 ; x2 p/b . Theo Viet có : \(\left\{{}\begin{matrix}x1+x2=2\left(m-1\right)\\x1.x2=-2m\end{matrix}\right.\)
\(\Rightarrow x1+x2+x1.x2=-2\)
Mặt # ta có : \(\left[{}\begin{matrix}x1=m-1+\sqrt{m^2+1};x2=m-1-\sqrt{m^2+1}\\x1=m-1-\sqrt{m^2+1};x2=m-1+\sqrt{m^2+1}\end{matrix}\right.\)
Ta có : \(x1^2+3x2-4x1.x2=5\)
Đặt x1 = a ; x2 = b ; ta có hệ : \(\left\{{}\begin{matrix}a+b+ab+2=0\left(1\right)\\a^2+3b-4ab-5=0\left(2\right)\end{matrix}\right.\)
Từ (1) suy ra : \(b=\dfrac{-\left(a+2\right)}{a+1}\) ; ab = -a-b-2 ( Loại a = -1)
Thay vào (2) được : \(a^2+3b+4a+4b+8-5=0\) \(\Leftrightarrow\left(a+2\right)^2+7b=1\)
\(\Leftrightarrow b=\dfrac{1-\left(a+2\right)^2}{7}\)
Suy ra : \(\dfrac{-\left(a+2\right)}{a+1}=\dfrac{1-\left(a+2\right)^2}{7}\)
\(\Leftrightarrow7\left(a+2\right)=\left[\left(a+2\right)^2-1\right]\left(a+1\right)\)
\(\Leftrightarrow\) \(a^3+5a^2-11=0\)
Đoạn này bí quá ; bn thử giải xem
Cho pt \(x^{^{ }2}-8x+m=0\). Tìm các giá trị của m để pt có hai nghiệm \(x_1,x_2\) thỏa mãn
a) \(2x_1+3x_2=6\) b) \(x_1=7x_2\) c) \(x_1-x_2=2\)
Moij người giúp mình với ạ mình đang cần gấp ạ
Cho pt \(x^2-2(m-4)x-m^2+4=0\)
Tìm tất cả các giá trị của m để pt có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{1}{x_1}+\dfrac{1}{x_2}+\dfrac{4}{x_1x_2}=1\)
Theo Vi et \(\left\{{}\begin{matrix}x_1+x_2=2\left(m-4\right)\\x_1x_2=-m^2+4\end{matrix}\right.\)
\(\dfrac{x_1+x_2}{x_1x_2}+\dfrac{4}{x_1x_2}=1\)
Thay vào ta được : \(\dfrac{2\left(m-4\right)+4}{-m^2+4}=1\Leftrightarrow\dfrac{2m-4}{\left(2-m\right)\left(m+2\right)}=1\Leftrightarrow\dfrac{-2}{m+2}=1\Rightarrow-2=m+2\Leftrightarrow m=-4\)
1 . Cho pt :\(x^2-mx+m-1=0\) . Tìm m để pt có 2 nghiệm \(x_1,x_2\) và biểu thức \(A=\dfrac{2x_1x_2+3}{x^2_1+x^2_2+2\left(x_1x_2+1\right)}\) đạt GTLN
2.Giả sử m là giá trị để phương trình \(x^2-mx+m-2=0\) có 2 nghiệm \(x_1,x_2\) thỏa mãn \(\dfrac{x_1^{^2}-2}{x_1-1}.\dfrac{x^2_2-2}{x_2-1}=4\) . Tìm các giá trị của m
1.
\(a+b+c=0\) nên pt luôn có 2 nghiệm
\(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-1\end{matrix}\right.\)
\(A=\dfrac{2x_1x_2+3}{x_1^2+x_2^2+2x_1x_2+2}=\dfrac{2x_1x_2+3}{\left(x_1+x_2\right)^2+2}=\dfrac{2\left(m-1\right)+3}{m^2+2}=\dfrac{2m+1}{m^2+2}\)
\(A=\dfrac{m^2+2-\left(m^2-2m+1\right)}{m^2+2}=1-\dfrac{\left(m-1\right)^2}{m^2+2}\le1\)
Dấu "=" xảy ra khi \(m=1\)
2.
\(\Delta=m^2-4\left(m-2\right)=\left(m-2\right)^2+4>0;\forall m\) nên pt luôn có 2 nghiệm pb
Theo Viet: \(\left\{{}\begin{matrix}x_1+x_2=m\\x_1x_2=m-2\end{matrix}\right.\)
\(\dfrac{\left(x_1^2-2\right)\left(x_2^2-2\right)}{\left(x_1-1\right)\left(x_2-1\right)}=4\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1^2+x_2^2\right)+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(x_1x_2\right)^2-2\left(x_1+x_2\right)^2+4x_1x_2+4}{x_1x_2-\left(x_1+x_2\right)+1}=4\)
\(\Rightarrow\dfrac{\left(m-2\right)^2-2m^2+4\left(m-2\right)+4}{m-2-m+1}=4\)
\(\Rightarrow-m^2=-4\Rightarrow m=\pm2\)
9.2
cho `x^2 -4x+m-5=0`
tìm m để pt có 2 nghiệm pb `x_1 ;x_2` thỏa mãn \(\left(x_1-1\right)\left(x_2^2-3x_2+m-6\right)=-3\)
9.1
cho `x^2 -2(m+1)x-m^2 -3=0`
tìm m để pt có 2 nghiệm pb thỏa mãn \(\left(x_1+x_2-6\right)^2\left(x_2-2x_1\right)=\left(x_1x_2+7\right)^2\left(x_1-2x_2\right)\)
tìm m để pt x\(^2-2\left(m+1\right)x+m^2+2=0\) có 2 nghiệm phân biệt x1;x2 thỏa mãn \(x_1^2+x_1x_2+2=3x_1+x_2\)
B6:Tìm các giá trị của m để pt sau có nghiệm \(x_1x_2\) thỏa mãn; \(x_1^2+x_2^2+3x_1x_2=2\)
a)\(x^2-4x+m-1=0\)
b)\(x^2-2x+m-1=0\)
a) Giả sử phương trình bậc 2: \(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\) có 2 nghiệm \(x_1,x_2\)thỏa mãn \(x_1+x_2\le4\). Tìm Max, Min của \(P=x^3_1+x^3_2+x_1x_2\left(3x_1+3x_2+8\right)\)
b) Cho hàm \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left|x-2\right|}\). Tìm tất cả các giá trị của \(m\) để \(f\left(x\right)< 0,\forall x\in\left[0;1\right]\)
b, Ta có : \(0\le x\le1\)
\(\Rightarrow-2\le x-2\le-1< 0\)
Ta có : \(y=f\left(x\right)=2\left(m-1\right)x+\dfrac{m\left(x-2\right)}{\left(2-x\right)}\)
\(=2\left(m-1\right)x-m< 0\)
TH1 : \(m=1\) \(\Leftrightarrow m>0\)
TH2 : \(m\ne1\) \(\Leftrightarrow x< \dfrac{m}{2\left(m-1\right)}\)
Mà \(0\le x\le1\)
\(\Rightarrow\dfrac{m}{2\left(m-1\right)}>1\)
\(\Leftrightarrow\dfrac{m-2\left(m-1\right)}{2\left(m-1\right)}>0\)
\(\Leftrightarrow\dfrac{2-m}{m-1}>0\)
\(\Leftrightarrow1< m< 2\)
Kết hợp TH1 => m > 0
Vậy ...
\(x^2-2\left(m-1\right)x-m^3+\left(m+1\right)^2=0\)
Để pt có hai nghiệm thỏa mãn
\(\Leftrightarrow\left\{{}\begin{matrix}\Delta\ge0\\x_1+x_2=2\left(m-1\right)\le4\end{matrix}\right.\)\(\Leftrightarrow\left\{{}\begin{matrix}m\left(m-2\right)\left(m+2\right)\ge0\\m\le3\end{matrix}\right.\)\(\Rightarrow\left\{{}\begin{matrix}m\in\left[-2;0\right]\cup\left(2;+\infty\right)\cup\left\{2\right\}\\m\le3\end{matrix}\right.\)\(\Rightarrow m\in\left[-2;0\right]\cup\left[2;3\right]\)
\(P=x^3_1+x_2^3+x_1x_2\left(3x_1+3x_2+8\right)\)
\(=\left(x_1+x_2\right)^3-3x_1x_2\left(x_1+x_2\right)+3x_1x_1\left(x_1+x_2\right)+8x_1x_2\)
\(=8\left(m-1\right)^3+8\left(-m^3+m^2+2m+1\right)\)
\(=-16m^2+40m\)
Vẽ BBT với \(f\left(m\right)=-16m^2+40m\) ;\(m\in\left[-2;0\right]\cup\left[2;3\right]\)
Tìm được \(f\left(m\right)_{min}=-144\Leftrightarrow m=-2\)
\(f\left(m\right)_{max}=16\Leftrightarrow m=2\)
\(\Rightarrow P_{max}=16;P_{min}=-144\)
Vậy....